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Human brains are finite, and thus have bounded
capacity. An efficient strategy for a capacity-limited
agent is to continuously adapt by dynamically
reallocating capacity in a task-dependent manner. Here
we study this strategy in the context of visual working
memory (VWM). People use their VWM stores to
remember visual information over seconds or minutes.
However, their memory performances are often error-
prone, presumably due to VWM capacity limits. We
hypothesize that people attempt to be flexible and
robust by strategically reallocating their limited VWM
capacity based on two factors: (a) the statistical
regularities (e.g., stimulus feature means and variances)
of the to-be-remembered items, and (b) the
requirements of the task that they are attempting to
perform. The latter specifies, for example, which types
of errors are costly versus irrelevant for task
performance. These hypotheses are formalized within a
normative computational modeling framework based
on rate-distortion theory, an extension of conventional
Bayesian approaches that uses information theory to
study rate-limited (or capacity-limited) processes. Using
images of plants that are naturalistic and precisely
controlled, we carried out two sets of experiments.
Experiment 1 found that when a stimulus dimension
(the widths of plants’ leaves) was assigned a
distribution, subjects adapted their VWM performances
based on this distribution. Experiment 2 found that
when one stimulus dimension (e.g., leaf width) was
relevant for distinguishing plant categories but another
dimension (leaf angle) was irrelevant, subjects’
responses in a memory task became relatively more
sensitive to the relevant stimulus dimension. Together,
these results illustrate the task-dependent robustness

of VWM, thereby highlighting the dependence of
memory on learning.

Introduction

In the field of information theory, it is widely known
that efficient signal communication depends on the
statistical regularities of the information to be com-
municated (Cover & Thomas, 1991; MacKay, 2003;
Shannon & Weaver, 1949). For example, digital audio
stored in the MP3 file format can often be reduced in
size by a factor of 10 relative to the size of uncom-
pressed audio. This compression is possible, in part,
because most audio files are not purely random
frequencies, but rather possess rich statistical struc-
ture—some frequencies are more common than others,
and transitions between frequencies are often predict-
able. In addition to exploiting statistical regularities,
MP3 files compactly store audio signals because they
do not attempt to encode the signal perfectly. To the
human ear certain frequencies are less discriminable
than others, and hence it is less important to encode
those frequencies exactly. This example demonstrates
that the designers of the MP3 format used two sources
of knowledge—knowledge of statistical regularities,
and of the kinds of errors that are permissible or less
costly—to address the problem of ‘‘bit allocation,’’ an
instance of the broader problem of distributing a
limited or scarce resource to achieve the maximum
benefit (Gersho & Gray, 1992). Through bit allocation,
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engineered systems can store, process, or communicate
information in a highly efficient manner.

Here, we are concerned not with the design of
engineered systems, but rather with understanding
information processing in a particular natural system:
human visual working memory (VWM). Since the
publication of Miller’s famous paper on the ‘‘magic
number seven, plus or minus two’’ (Miller, 1956), it
has been known that working memory is limited in
capacity, and that this capacity can be measured using
constructs from information theory. However, a
question that has lingered unanswered is the extent to
which working memory can be limited yet efficient, in
the formal sense of making optimal use of its
available capacity. This would require a system that is
adapted to the statistical regularities of the to-be-
remembered items, and also adapted to the impor-
tance of storing different dimensions more or less
accurately. In other words, this would require a
system that has successfully addressed the ‘‘bit
allocation’’ problem.

In this paper, we analyze people’s VWM perfor-
mances via rate-distortion theory (Berger, 1971), a
branch of statistical decision theory that extends
conventional Bayesian approaches through the use of
information theory to study rate-limited (or capacity-
limited) processes (Sims, 2015, 2016; Sims, Jacobs, &
Knill, 2012). Rate-distortion theory provides a nor-
mative framework for understanding biological per-
ception, much like theories of perception constructed
around Bayesian inference (Knill & Richards, 1996).
However, rate-distortion theory extends conventional
Bayesian approaches by incorporating a strong theory
of capacity limits on information processing. Hence,
one should view the current framework as an extension
of, rather than replacement for, conventional Bayesian
approaches to perception. As discussed below, this
framework allows us to quantitatively estimate aspects
of people’s perception and cognition in a rigorous and
principled manner. In particular, we are interested in
estimating peoples’ VWM capacity, their VWM sensi-
tivity to the distributions of stimulus features, and their
VWM sensitivity to the nature of a task, such as which
features are more or less important for performing the
task.

Our experiments used a novel set of stimuli created
using a computer animation software package. The
stimuli were images of artificial plants with varying leaf
widths and leaf angles. In Experiment 1, subjects
performed a change-detection task, a common test of
VWM performance. Here, leaf widths were assigned a
distribution (e.g., a normal distribution), and we
studied whether, over time, subjects’ VWM perfor-
mances would adapt to this distribution. The data
indicate that, yes, subjects did indeed adapt to the
properties of this stimulus distribution. In Experiment

2, we initially trained subjects to categorize plants when
one stimulus dimension (e.g., leaf width) was relevant
for distinguishing plant categories whereas another
dimension (leaf angle) was irrelevant. Next, subjects
performed trials using a change-detection task. Anal-
yses indicate that subjects’ responses were more
sensitive to the stimulus dimension that was relevant to
the categorization task relative to the task-irrelevant
dimension.

Taken together, these experiments illustrate the task-
dependent robustness of VWM, thus highlighting the
dependence of memory on learning. A person who is a
poor learner (or a person who is new to a visual
environment or task) will have poor knowledge of the
statistical regularities of items in the visual environment
and poor knowledge of the requirements of visual
tasks. Such a person will, inevitably, show poor VWM
performances. In contrast, an excellent learner (or a
person who is highly familiar with a visual environment
or task) will have good knowledge of the statistical
regularities of to-be-remembered items and good
knowledge of task requirements. As illustrated by the
empirical and theoretical findings reported here, the
acquisition of this knowledge makes it possible for this
person to engage in bit allocation—that is, to allocate
resources so as to maximize benefits—and thus to show
good VWM performances.1

Background literature

A growing body of work points to an important
role for knowledge of statistical regularities in VWM,
and suggests that use of statistical regularities allows
for more efficient memory (Bae, Olkkonen, Allred, &
Flombaum, 2015; Brady & Alvarez, 2011; Brady,
Konkle, & Alvarez, 2009; Brady & Tenenbaum, 2013;
Corbett, 2016; Huttenlocher, Hedges, & Vevea, 2000;
Orhan & Jacobs, 2013; Sanocki, Sellers, Mittelstadt, &
Sulman, 2010; Sims et al., 2012; Swan, Collins, &
Wyble, 2016; Victor & Conte, 2004). For example,
Brady and Alvarez (2011) and Corbett (2016) showed
that subjects’ memories for items in a display are
biased toward items’ summary statistics, meaning
statistical regularities averaged over multiple items in
the display. Brady and Tenenbaum (2013) showed that
subjects can capitalize on regularities in the spatial
arrangements of objects to improve performances in a
memory task.

While the above work establishes that VWM can
leverage statistical regularities, it does not address
whether VWM is dynamically adaptive or, if so, how
this adaptation might work. Towards this end, we seek
to connect VWM to the phenomenon of implicit
statistical learning in human visual perception (Fiser &
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Aslin, 2001, 2002a, 2002b; Orbán, Fiser, Aslin, &
Lengyel, 2008). For example, Orbán et al. (2008) used
scenes containing novel shapes arranged in a grid,
where the shapes were drawn from a finite set. The
arrangements of shapes contained ‘‘chunks,’’ where a
chunk was a group of shapes that often appeared
together in a particular spatial configuration. The
authors demonstrated that subjects implicitly learned
these chunks, and that their learning was best
accounted for by a hierarchical Bayesian model that
inferred the most likely chunks given the arrangements
of objects observed. We propose that, like visual
perception, VWM may be similarly adaptive, if it relies
on general statistical learning mechanisms. Thus VWM
could quickly tune itself based on the statistical
properties of the visual environment.

Prior studies have begun to demonstrate a link
between statistical learning and VWM. Brady et al.
(2009) showed subjects displays with pairs of concentric
circles. Subjects’ memories for the colors of these circles
improved over a few hundred trials when the colors of
circles forming a pair were correlated, but not when
they were uncorrelated. When subjects were initially
exposed to circles with correlated colors but the
correlations were removed in the final block of trials,
memory performance dropped to the same level as that
of a control group for which colors were always
uncorrelated. This result suggests that the improvement
in memory performance during the initial phase of the
experiment was due to the acquisition of knowledge of
the color correlations, as opposed to an increase in
capacity.

Huttenlocher et al. (2000) conducted an experiment
in which, on each trial, a subject was briefly shown a
fish-shaped silhouette whose size was drawn from a size
distribution and, after a short delay, the subject was
required to reproduce the stimulus from memory by
adjusting the size of a probe silhouette. It was found
that, over time, subjects showed a bias in their
reproductions toward the mean of the size distribution.
The authors conceptualized the size distribution as
representing a category which the subjects implicitly
learned. To account for the ‘‘perceptual magnet effect’’
(i.e., the finding that judgments for stimuli that are
clearly within a category are often biased toward the
category mean), they used a Bayesian model that
computed a weighted sum between the category
distribution and a noisy, unbiased memory distribu-
tion.

A distinguishing feature of the research presented
here is that we analyze our experimental data and
interpret our results using a normative information-
theoretic framework based on rate-distortion theory,
thereby improving on conventional Bayesian ap-
proaches by taking into account the fact that VWM is
capacity limited (Berger, 1971). This framework

allows us to make inferences about subjects’ percep-
tual and cognitive processes at a much finer scale than
has previously been possible. For instance, it allows us
to separately infer subjects’ knowledge of statistical
regularities about visual stimuli (which may differ
from the true regularities) and knowledge of which
types of memory errors are task-relevant versus
irrelevant. Maintaining the distinction between these
two types of knowledge is important when, for
example, a stimulus feature has a statistical regularity,
but this feature is irrelevant for the task that the
subject is attempting to perform. The framework also
allows us to infer subjects’ VWM capacities using
mathematically meaningful units (e.g., bits) as op-
posed to the ad hoc or domain-specific units (e.g.,
slots, items, etc.) that have been used previously in the
scientific literature.

Theoretical framework

Sims (2016) provided a tutorial on rate-distortion
theory and its application to visual perception and
memory. Here, we briefly overview this framework,
focusing on the predictions it generates for the current
experiments.

The basis for our approach is the assumption that
VWM approximates an efficient communication chan-
nel. Abstractly, an information channel can be con-
ceived of as an information processing system that
takes as input a signal x drawn from some probability
distribution p(x), and produces a possibly different
signal x̂ as output, according to a conditional
probability distribution pðx̂jxÞ: As applied to the study
of VWM, the channel input consists of afferent sensory
information, and the channel output is the perceptual
representation held in, or retrieved from VWM. A
conceptual diagram is given in Figure 1.

An efficient channel must possess three formal
properties (Cover & Thomas, 1991; MacKay, 2003;
Shannon & Weaver, 1949). First, the channel must be
sensitive to the statistics of the signal conveyed over the
channel. That is, an efficient channel must possess and
exploit knowledge of the sensory signal distribution
p(x). In conventional Bayesian models, knowledge of
the sensory distribution p(x) is referred to as the
observer’s ‘‘prior’’ distribution, and this distribution
sets the background knowledge or ‘‘probabilistic
context’’ for processing sensory signals. In rate-
distortion theory, knowledge about p(x) plays the same
role. When applied to the study of VWM, rate-
distortion theory predicts that memory performances
for a given visual item will differ across contexts, such
as when the item is sampled from a uniform
distribution versus a normal distribution across possi-

Journal of Vision (2019) 19(2):11, 1–23 Bates, Lerch, Sims, & Jacobs 3

Downloaded from jov.arvojournals.org on 04/27/2020



ble items (assuming the memory system has been given
time to learn a particular distribution). The idea that
neural systems adapt to their afferent signal statistics
has received extensive empirical support in sensory
neuroscience, where it is known as the efficient coding
hypothesis (Barlow, 1961).

Second, a channel must have sufficient channel
capacity to achieve the desired level of performance.
When channel capacity is lower than the statistical
complexity of the information source (measured by its
information entropy; Cover & Thomas, 1991; MacKay,
2003), it is certain that errors must occur in the course
of information transmission. While capacity limits
present a major topic of study in VWM (for a review,
see Ma, Husain, & Bays, 2014), information theory
contributes a principled measure of limited-capacity
perceptual systems.

Lastly, for a communication channel to be optimal,
it is necessary to quantify the criterion for performance
in terms of a cost function. While limits in capacity
necessitate errors in information processing, an optimal
system should seek to minimize the cost of perceptual
error. The cost function L(x; x̂) specifies the goals for
the channel in terms of the cost of reproducing signal x
as a possibly different signal x̂. For unitary stimuli, a
simple cost function might be the squared error (x̂ –
x)2. For an optimally efficient channel, the cost
function is defined by the behavioral task that the
organism seeks to perform. Note that the organism’s
implicit task may not necessarily agree perfectly with
the experimenter-defined task.

With these three properties characterized, it is
possible to define an optimally efficient communication
channel as a channel that minimizes expected (or
average) cost for the given cost function, subject to a

constraint on available channel capacity. This can be
stated as follows:

Goal : Minimize E L x; x̂ð Þ½ � with respect to p x̂jxð Þ;
subject to I x; x̂ð Þ � C: ð1Þ

The term Iðx; x̂Þ refers to the mutual information
between the channel input x and output x̂ (it is a
measure of the amount of information conveyed by the
channel). This quantity is constrained by the limit on
information rate for the channel, C. In the current work
we use an efficient numerical algorithm for solving this
constrained optimization problem (see Blahut, 1972
and Sims, 2016).

Although rate-distortion theory and conventional
Bayesian approaches often make similar predictions—
not unsurprising given that rate-distortion theory
makes extensive use of Bayesian statistics—these
predictions are not always identical. Differences in their
predictions stem from the fact that rate-distortion
theory assumes that the processes under study are
information rate- or capacity-limited, whereas conven-
tional Bayesian approaches do not make assumptions
about capacity limits.

An important difference, relevant to Experiment 1
discussed below, arises when one considers how an
ideal observer’s memory performance should change
with changes in the distribution of visual stimuli. This
situation is extensively discussed in Appendix A where
it is shown that, given modest mathematical assump-
tions, rate-distortion theory predicts that an ideal
observer’s memory performance should steadily decline
with increases in the standard deviation of the stimulus
distribution, whereas a conventional Bayesian ap-
proach predicts that this performance will degrade
slowly (see Figure 2). At an intuitive level, these
differences in predictions are expected. Rate-distortion
theory assumes that the ideal observer allocates its
limited capacity to cover the entire stimulus range, and
thus this capacity is ‘‘spread thinner’’ as the size of the
stimulus range increases. In contrast, a conventional
Bayesian model assumes that an ideal observer does
not have a capacity limit, and thus the observer’s
memory performance can be robust to increases in the
size of the stimulus range. As reported below, the
results of Experiment 1 are qualitatively consistent with
the predictions of rate-distortion theory.

Additional important predictions of the rate-distor-
tion framework are illustrated in Figure 3. In this
figure, sensory signals are assumed to vary along a
unidimensional distribution p(x). In Figure 3a, a
stimulus x0 (indicated by the vertical line) is sampled
from a probability distribution p(x), shown in blue. The
stimulus x0 is stored in a capacity-limited VWM. Rate-
distortion theory predicts that the precision of the
distribution of VWM representations ½pðx̂jx ¼ x0Þ;
referred to as the memory distribution and shown in

Figure 1. VWM is modeled as an information-theoretic

communication channel. Sensory signals (in this example,

images of houseplants) are input to the channel; the output is

the (error-prone) VWM representation. The channel has finite

capacity, meaning that the mutual information between

channel input and output, Iðx; x̂Þ, must be less than or equal to

some finite capacity C. Lastly, to be an efficient channel, it is

optimized to minimize a specified cost function, Lðx; x̂Þ: For an
efficient channel, the cost function is defined by the task the

observer is performing.
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orange] depends on the capacity of VWM. The left
panel assumes an available capacity of 3 bits, whereas
the right panel has a capacity of 1 bit. This is reflected
in the figure, because the orange distribution is
narrower (more precise) in the left panel compared to
the right.

Figure 3b illustrates rate-distortion theory’s predic-
tion that the precision of a VWM memory distribution
for a given stimulus depends strongly on the entropy
(approximately, the width) of the stimulus distribution.
The examples in the left and right panels have the same
available channel capacity (1 bit), but memory preci-
sion is greater when stimuli are sampled from a
narrower (lower entropy) distribution. As discussed
above (see Figure 2), this effect is not predicted by
conventional Bayesian theories of perception (see
Appendix A).

As demonstrated in Figure 3c, limitations in capacity
also provide an elegant explanation for ‘‘set size’’
effects in VWM (i.e., VWM performance decreases as
the number of visual items in a display increases). The
left panel shows the predicted VWM memory distri-
bution as a function of the number of items stored,
assuming that VWM’s total capacity is evenly divided
among items. For example, for set-size 6, the plotted
curve represents the memory distribution for just one of
the six items, but curves for the five other items would
have the same shape. The right panel shows the
predicted recall standard deviation as a function of set
size (that is, the standard deviation of the memory
distributions plotted in the left panel). A model based

on rate-distortion theory has been shown to provide a
close quantitative account of empirical set size effects
(Sims et al., 2012). In contrast, conventional Bayesian
models of VWM do not provide a satisfying account of
set size effects. These models typically assume that
memory representations are corrupted by additive
noise. To account for set size effects, the variance of
this noise must increase with set size (e.g., Orhan &
Jacobs, 2013). This ad hoc assumption made for the

Figure 2. The horizontal axis plots the standard deviation of the

stimulus distribution, and the vertical axis plots the root mean

squared error in an ideal observer’s memory performance.

Given modest mathematical assumptions (see Appendix A),

rate-distortion theory predicts that memory performance will

rapidly diminish with increases in the standard deviation r of

the stimulus distribution (red line). In contrast, a conventional

Bayesian approach predicts that performance will degrade

slowly. Both models are calibrated to produce identical

performance at r¼ 10. For the rate-distortion model,

information capacity was fixed at 2.2 bits, close to the value

estimated from subjects’ data in Experiment 1.

Figure 3. Illustrations of some predictions of the rate-distortion

framework. See text for explanations.
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purpose of ‘‘curve fitting’’ experimental data is neces-
sary because these models do not inherently include a
notion of rate-limited (or capacity-limited) processing.

Figure 3d demonstrates that when stimuli are drawn
from a non-uniform distribution, rate-distortion theory
(like Bayesian inference) predicts that the VWM
memory distribution will be biased towards the mean of
the stimulus distribution. In the left panel, the stimulus
distribution is uniform, whereas this distribution is
normal in the right panel. Consequently, the VWM
memory distribution in the right panel is biased
towards the mean of the stimulus distribution, whereas
the distribution in the left panel is not.

Rate-distortion theory also predicts that the shape of
a VWM memory distribution depends critically on the
cost function that VWM seeks to optimize, as
demonstrated in Figure 3e. The VWM memory
distributions in the left and right panels differ because
the left panel assumes an absolute error criterion,
whereas the right panel assumes a cubic error function.
(All other panels in Figure 3 assume a squared error
cost function.)

To validate the application of rate-distortion theory
to the study of VWM, all of the theory’s predictions
need to be experimentally evaluated. In this paper, we
focus on two predictions. First, to be efficient, VWM
should be sensitive to the statistics of sensory infor-
mation. This would be demonstrated by changes in
VWM memory distributions with changing stimulus
distributions. Second, VWM should be sensitive to the
costs of memory error. Different tasks that impose
different demands and costs of error should lead to
different distributions of errors produced in memory.
To our knowledge, these predictions are not shared by
competing theories of VWM (for an overview of
alternative theories of VWM, see Ma et al., 2014).
While previous research on VWM has uncovered
evidence of both statistical adaptation effects and
adaptation to the demands of a task, rate-distortion
theory uniquely unifies these findings within a single
coherent and normative framework that is specialized
for the study of rate-limited processes.

Experiment 1

Suppose a person views a set of plant leaves, and
then attempts to recall the leaves’ colors. The person
may make memory errors but, intuitively, these errors
will not be uniformly distributed. Instead the errors
should exhibit a systematic pattern in which some
errors are more likely than others. For instance, it is
unlikely that the person will make an error by recalling
the color of a leaf as blue, because the person has
learned over time that the probability of a blue leaf is

very small. By contrast, the same may not be true if the
item to be remembered is someone’s shirt, instead of a
leaf. The goal of Experiment 1 was to examine whether
and, if so, how subjects’ VWM performances adapt to
the distribution of stimulus features.

Subjects

The experimental study was approved by the
Research Subjects Review Board at the University of
Rochester. Three hundred twenty-four subjects (81
subjects in each of four conditions) participated in the
experiment over the world wide web via the Amazon
Mechanical Turk (MTurk) crowd-sourcing market-
place. Interfacing with MTurk was facilitated through
the use of the psiTurk programming platform (Gu-
reckis et al., 2016). psiTurk was configured so that only
individuals based in the United States could participate
in the experiment. Subjects stated that they were at
least 18 years old. It took approximately 30 min to
complete the experiment, and each subject received
$3.25 for his or her participation.

Stimuli

Visual stimuli were computer-rendered images of
artificial plants created using Blender, a computer
graphics package for three-dimensional (3-D) modeling
and animation. A 3-D model of a plant was read into
Blender, and ‘‘shape keys’’ were defined characterizing
the width of a plant’s leaves and the angle at which a
plant’s leaves sag. Using these shape keys, morphs of a
plant were created and rendered. As illustrated in
Figure 4, the collection of plants can be regarded as
residing in a 2-D space where leaf width varies along
one dimension and leaf angle varies along the other
dimension. Experiment 1 used plants with varying leaf
width but fixed leaf angle. Leaf width was discretized to
101 values. Experimental stimuli did not exceed the
edges of the stimulus space, meaning that stimuli
ranged from the plant with the narrowest leaves,
referred to as plant-0, to the plant with the widest
leaves, referred to as plant-100.

These stimuli are an advance over stimuli used in the
majority of previous experiments studying VWM
because they are both naturalistic and easily controlled
in a precise manner. Previous experiments have tended
to use simple (perhaps simplistic) stimuli, such as
oriented bars or colored squares. The advantage of
these simple stimuli is that they can be precisely
controlled. The disadvantage of using these stimuli is
that there are empirical and theoretical reasons to
question whether VWM performances with these
stimuli are representative of performances in more

Journal of Vision (2019) 19(2):11, 1–23 Bates, Lerch, Sims, & Jacobs 6

Downloaded from jov.arvojournals.org on 04/27/2020



natural settings (Brady, Störmer, & Alvarez, 2016;
Endress & Potter, 2014; Orhan & Jacobs, 2014).
Experiments with natural stimuli are infrequent be-
cause these stimuli are difficult to control (Rust &
Movshon, 2005). The stimuli used in our experiment
strike a good balance between naturalness and control.

Procedure

After providing informed consent, reading the
instructions, and successfully completing a multiple-
choice quiz testing their understanding of the instruc-
tions, subjects performed a change-detection task. On
each trial, a subject viewed a fixation cross for 750 ms, a
target image for 2000 ms, a blank screen for 1000 ms,
and then a probe image that stayed on the screen until
the subject responded. The probe image was randomly
displaced to the left or right by 15 pixels relative to the
target image. If the subject believed that the plants
depicted in the target and probe images were the same,
the subject was instructed to press the ‘‘s’’ (same) key.
Otherwise the subject should press the ‘‘d’’ (different)
key. Following the response, the subject was provided
with feedback indicating whether the response was
correct. Each subject performed two practice trials
followed by 220 experimental trials. Half of the
experimental trials were ‘‘same’’ trials and the remain-
ing were ‘‘different’’ or ‘‘change’’ trials. On a change
trial, the leaf widths of the plants depicted in the target
and probe images differed by an amount that was

drawn randomly from the set {�2D,�D, D, 2D}, where
D was 0.08 times the maximum possible difference in
leaf width (i.e., the leaf width for plant-100 minus the
leaf width for plant-0).

Each subject participated in one of four possible
experimental conditions. Different conditions used
different stimulus distributions. In one condition,
plants depicted in target images were randomly
sampled from a uniform distribution over the set of
possible plants. In the remaining three conditions,
target plants were sampled from normal distributions
whose means were plant-30, plant-50, and plant-75,
respectively (standard deviations were set to 10).

Data analysis: Rate-distortion theory

To apply rate-distortion theory to the current
experimental data, it is necessary to specify the three
properties discussed above: the subject’s knowledge of
the stimulus distribution p(x), the capacity of the
channel C, and the cost function that is minimized
L(x,x̂). We assume that subjects’ belief about the
stimulus statistics, ~pðxÞ, follows a normal distribution,
~pðxÞ ¼N (l,r), and we infer l and r. Since the channel
capacity of VWM is not known in advance, it is
estimated from the experimental data as a free
parameter in the model. In Experiment 1, the cost
function, which specifies the cost of each possible
memory error x̂ 6¼ x, is assumed to be squared error.

Rate-distortion theory provides predictions for an
optimal, but capacity-limited VWM system. Presented
with a particular plant stimulus x, the model generates
predictions for the distribution of possible memory
errors, pðx̂jxÞ. To apply this model to our experimental
task, it is necessary to specify how noisy memory
representations are mapped onto binary responses in a
change-detection task. In keeping with our goal of
deriving a normative model, we assume that subjects
compute the posterior probability that a change has
occurred, given a noisy memory representation x̂ and a
probe stimulus y, via Bayes’ theorem:

p ‘‘change’’jx̂; yð Þ } pðx̂; yj‘‘change’’Þp ‘‘change’’ð Þ: ð2Þ

This introduces one additional parameter into the
model, namely the prior probability that a given trial
will be a change trial, p(‘‘change’’) ¼ pchange. To allow
for noise in responses, we assume that subjects exhibit
probability matching (Vulkan, 2000). That is, the
probability that a subject responds ‘‘different’’ (or
‘‘change’’) on a given trial is equal to the computed
probability that a change has occurred (see Keshvari,
van den Berg, & Ma, 2013, for a similar application of
this idea in modeling VWM). A schematic of the VWM
model and the decision rule is shown in Figure 5. A

Figure 4. Two-dimensional space of artificial plants. The width of

a plant’s leaves varies along the horizontal axis from narrow to

wide. The angle of a plant’s leaves varies along the vertical axis

from an angle in which leaves sag downward to an angle in

which leaves are horizontal. In Experiment 1, the leaf-width

dimension was discretized to 101 values, and thus the

experiment used 101 images. In Experiment 2, the leaf-width

and leaf-angle dimensions were each discretized to 11 units,

and thus the experiment used 121 images. For illustrative

purposes, this figure shows nine images.
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derivation of the Bayesian decision rule is provided in

Appendix B.

In summary, the model for Experiment 1 requires

estimating four parameters: channel capacity C, the
prior probability of a change trial pchange, l, and r. We

fit the model to the aggregated data from all subjects in

each condition (220 trials3 81 subjects¼ 17,820 trials).

However, we chose to make our model hierarchical by

fixing pchange and capacity across subjects, as we did not

expect these two parameters to be condition-dependent

(see below). Model parameters were estimated by

means of maximum likelihood estimation.2

Results

Because reliable parameter estimates require large
numbers of data items, we aggregated the responses of
all subjects in each experimental condition. Results are
shown in Figure 6 and Table 1. In the left graph of
Figure 6, the horizontal axis gives the trial number and
the vertical axis gives the average percent correct for
each condition. If VWM adapts to the stimulus
statistics in order to improve performance, we should
expect better performance in the three conditions using
a normal distribution than in the condition using a
uniform distribution, since a uniform distribution has
greater entropy (demonstrated in Figures 2 and 3b).
The left graph of Figure 6 shows that this prediction
was born out: Performance increased as the entropy of
the stimulus distribution decreased (p , 0.01 for each
pairwise comparison between performances in the
uniform condition versus a normal condition, where
hypothesis testing was conducted via bootstrapping).
This outcome is broadly consistent with the predictions
of rate-distortion theory, and does not support

Figure 5. Illustration of an information-theoretic model of VWM

for change detection. Information theory states that an efficient

communication channel must possess three properties: knowl-

edge of the relevant signal statistics ð~pðxÞÞ, a sufficient channel

capacity (C) to achieve the desired level of performance, and a

cost function (L(x, x̂)) that defines the cost of errors in signal

communication. A decision rule infers the probability that a

change has occurred using Bayes’ theorem, given the error-

prone memory representation (x̂) and the probe stimulus (y).

Figure 6. (Left) Average percent correct for aggregated subject data as a function of trial number for each experimental condition.

Values were computed using a 50-trial sliding window with an interval of 1 (i.e., Trials 1–50, 2–51, etc.). (Right) Raw (i.e.,

unsmoothed) average percent correct for aggregated subject data for Trials 1–50.

Mean 30 Mean 50 Mean 75 Uniform Global

l 31.4 49.3 58.6 34.6

r 20.2 18.8 21.9 32.7

C 2.26

pchange 0.40

Table 1. Maximum likelihood estimates of model parameters in
each of the four conditions of Experiment 1. Notes: The last
column (Global) gives values of parameters that were shared
across conditions. Capacity C is measured in bits.
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conventional Bayesian approaches that predict that
memory performance should be largely insensitive to
changes in the widths of stimulus distributions (see
discussion above, Figure 2, and Appendix A). A
potential problem with the left graph of Figure 6 is that
it suggests that performance differences between
conditions existed at the start of the experiment. This
problem arises because we smoothed the data across
trials to prepare this graph. The graph on the right
shows the raw (i.e., non-smoothed) data for the first 50
trials. It indicates that performance differences did not
exist at the start of the experiment, though they appear
to have arisen due to learning relatively early during
training.

Comparing the three conditions using a normal
distribution, it seems that subjects performed best when
plants tended to have narrow leaves. Note, however,
that leaves tended to be narrower in the condition using
a uniform distribution than in the condition using a
normal distribution with a mean of 75 but, despite this,
subjects performed better in the latter condition. Thus,
although the task was easiest when leaves were narrow,
this fact cannot explain subjects’ relative poor perfor-
mance in the uniform condition.

Table 1 summarizes our modeling results from
Experiment 1. We used maximum likelihood estimation
to infer values of our model’s parameters based on
subjects’ responses. When doing so, we inferred
parameter values for all experimental conditions
simultaneously in a hierarchical fashion: The parame-
ters that we did not expect to depend on condition were
shared across conditions (C and pchange), while the
remaining parameters were allowed to vary by condi-
tion (l and r). We report values using only subjects’
last 100 trials. (We found that a trial window of about
100 was necessary for stable estimates.)

The stimulus mean l and standard deviation r
estimates are sensible, and follow the expected quali-
tative trend. In the uniform condition, r was higher
than in all others, indicating that subjects in this
condition learned a higher variance stimulus distribu-
tion. In the normal conditions with means of 30, 50,
and 75 (standard deviations set to 10 in all cases), l was
about 30, 50, and 60, respectively, while r was always
about 20. We find these outcomes to be impressive.
With relatively little exposure, subjects in each condi-
tion learned roughly the correct stimulus distribution
and used this information when making VWM
judgments. Taken as a whole, these results support our
rate-distortion theory framework because they strongly
suggest that subjects adapted their VWMs based on the
stimulus distributions in order to improve memory
performances.

One might speculate that performances differed in
the various conditions simply because the conditions
used different sets of stimuli on average, and that

changes to some stimuli (such as plants with broad
leaves) were more detectable than others. To rule out
this possibility, we conducted the following analysis.
From the set of trials from the uniform stimulus
condition, we subsampled three different subsets. In
these subsets, the distribution of stimuli matched
exactly the distributions used for the plant-30, plant-50,
and plant-75 conditions. If performance depended on
the physical stimuli, and not adaptation to statistical
context, performance in the subsampled trials should
be identical to those in the corresponding normal
conditions.

The results strongly reject this explanation. On the
three subsets with stimulus means of 30, 50, and 75,
subjects responded correctly on 75%, 71%, and 73% of
the trials. The corresponding performances by subjects
in the conditions using the normal stimulus distribu-
tions were 84%, 81%, and 78%. Binomial tests found
significant differences for all three cases (p , 1310�10).
These results are general in the sense that they held for
50 replications where each replication used different
subsampled subsets.

In summary, the experimental data indicate that
subjects in each condition learned (roughly) the correct
stimulus distribution to improve their performances on
the change-detection task. Moreover, they did this
relatively quickly. Perhaps counter-intuitively, memory
performance depended not just on the stimuli that were
to be remembered, but the probabilistic context from
which the stimuli were sampled. These results are
consistent with the hypothesis that good memory
requires good learning.

Lastly, we also used maximum likelihood estimation
to fit a Bayesian observer model to subjects’ responses.
As expected based on our discussion above, our
capacity-limited rate-distortion model provides a com-
paratively better fit to the experimental data than the
Bayesian model. Further details about the comparisons
of the two models can be found in Appendix A.

Experiment 2

In Experiment 2, we used category-learning as a way
to explore how people dynamically reallocate VWM
capacity. Arguably, the most important statistical
property of everyday environments is that objects tend
to fall into groupings or categories (Mervis & Rosch,
1981; Pothos & Wills, 2011; Smith & Medin, 1981).
Animals can be categorized as fish, reptiles, birds, or
mammals; fruits can be categorized as apples, pears,
peaches, or bananas; and mushrooms or herbs can be
categorized as poisonous or safe. Unsurprisingly, the
ability to categorize objects is fundamental to human
cognition.
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An interesting aspect of many categorization tasks is
that some feature dimensions are relevant for identi-
fying category membership, whereas other dimensions
are not. For instance, body shape is relevant for
deciding whether a car is a Ford Mustang or a
Chevrolet Camaro, but body color is not. To experts in
a domain, it is obvious which feature dimensions are
relevant for understanding the categorical structure of
items in the domain. To novices, determining which
dimensions are important can be a difficult challenge.

Given this challenge, a possible approach might be
to perceive, remember, and process all feature values of
observed items. Unfortunately, people are not always
able to do so. Because people’s perceptual and memory
systems have information processing limits, they
cannot simultaneously perceive all features of all
objects in an environment and, even if they could, they
could not remember and process all this information.

It would seem to be efficient if a person with limited
capacity deploys that capacity in a strategic manner, by
allocating memory resources according to the relative
importance of remembering different features accu-
rately. We hypothesize that people dynamically reallo-
cate their limited VWM capacity based on the task-
defined importance of remembering different features,
particularly as defined by the categorical structure of
remembered items. We predict that people allocate
more capacity toward remembering the feature values
of objects when those features are relevant for
determining objects’ category memberships.

Experiment 2 was conducted in the same manner as
Experiment 1 with exceptions noted below.

Subjects

One hundred and one subjects participated in
Experiment 2. As in Experiment 1, subjects were
recruited and completed the experiment via Amazon
Mechanical Turk (MTurk).

Stimuli

Visual stimuli depicted artificial plants residing in the
2-D stimulus space illustrated in Figure 4. The leaf-
width and leaf-angle dimensions were each discretized
to 11 units, and thus the experiment used 121 images.

Procedure

The experiment contained two stages. During the
first stage, subjects performed categorization trials. By
defining a (deterministic) boundary in the stimulus
space, plants were assigned to one of two categories,

labeled ‘‘taxiforma alpha’’ and ‘‘taxiforma beta’’
(fictional plant subspecies). For one group of subjects
(n ¼ 50), the widths of a plant’s leaves determined the
plant’s category membership (leaf angle was an
irrelevant feature dimension). For instance, plants with
narrow leaves may have been members of taxiforma
alpha, whereas plants with wide leaves were members
of taxiforma beta. For the remaining subjects (n¼ 51),
the angles of a plant’s leaves determined the plant’s
category membership (leaf width was an irrelevant
dimension). On each of 64 categorization trials, a plant,
referred to as the target, was randomly selected (with
the constraint that the target could not lie on the
category boundary). The subject viewed a fixation cross
(displayed for 500 ms) and then an image of the target
(displayed for 1000 ms). Then the subject judged the
target’s category. A feedback message indicated
whether the subject’s response was correct.

The second stage consisted of 88 trials. At random,
half of these were categorization trials and half were
change-detection trials. A trial started by displaying a
fixation cross followed by an image of a target plant. If
the trial was a categorization trial, the subject was then
asked to judge the target’s category. If the trial was a
change-detection trial, the image of the target was
followed by a blank screen (displayed for 1000 ms),
which was then followed by the displays of a fixation
cross (500 ms) and an image of a second plant, referred
to as the probe, which remained on the screen until the
subject responded. The position of the image of the
probe (and the preceding fixation cross) was randomly
jittered to the left or right relative to the position of the
image of the target. At random, the probe was identical
to the target on half the change-detection trials. When
the probe differed from the target, it differed by either
0, 1, 2, or 3 units along the leaf-width dimension, the
leaf-angle dimension, or both (with the constraint that
it could not differ by 0 units along both dimensions,
and with the constraint that the probe had to lie within
the 2-D space). After the image of the probe appeared,
a subject judged whether the images of the target and
probe were visually identical (‘‘same’’ response) or not
(‘‘different’’ response). Feedback was not provided on
change-detection trials.

Results

We analyzed the experimental data using mixed-
effects logistic regression and using rate-distortion
theory.

Mixed-effects logistic regression

Subjects’ responses on the change-detection trials
were analyzed using mixed-effects logistic regression
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models. In general, logistic regression is an extension of
linear regression that is suitable for modeling binary
response data (e.g., ‘‘same’’ and ‘‘different’’ responses;
McCullagh & Nelder, 1989). A mixed-effects logistic
regression is an extension of a logistic regression that
describes a relationship between a response variable
and independent variables whose coefficients can vary
with respect to one or more grouping variables (e.g.,
one subset of responses was produced by one subject,
whereas another subset of responses was produced by
another subject). Consequently, it can represent the
covariance structure related to the grouping of data
(Faraway, 2016; Gelman & Hill, 2007; Knoblauch &
Maloney, 2012; Moscatelli, Mezzetti, & Lacquaniti,
2012).

Each data item contained five numbers describing a
trial: (a) the response variable indicated whether a
subject responded ‘‘same’’ or ‘‘different’’; (b) the
independent variable delta-leaf-width was set to the
absolute value of the difference in leaf width between
the first and second plants; (c) delta-leaf-angle was set
to the analogous value for leaf angle; (d) condition
indicated whether a subject was trained in the
categorization condition for which leaf width was the
relevant dimension or the condition for which leaf
angle was the relevant dimension; and (e) subject gave
the subject number. Delta-leaf-width, delta-leaf-angle,
and condition were normalized to have a mean of zero
and variance of one. The regression was performed
using the ‘‘lme4’’ library (Bates, Mächler, Bolker, &
Walker, 2015) of the R statistical computing environ-
ment (R Core Team, 2015).

We defined three nested models where ModelM1 is
the most complex,M2 is nested withinM1, andM3 is
nested withinM2. These models reflect different
assumptions regarding the influence of the training
condition on change detection performance. InM1,
population-level effects (so-called fixed effects) were
modeled using an intercept and independent variables
delta-leaf-width, delta-leaf-angle, and condition, as well
as interactions between delta-leaf-width and condition
and between delta-leaf-angle and condition. The
intercept and the coefficients on delta-leaf-width and
delta-leaf-angle were allowed to vary by subject
(random effects). ModelM2 was identical toM1 except
that it omitted the interaction terms in the set of
independent variables. ModelM3 was identical toM2

except that it omitted the condition variable. If
categorization training led subjects to dynamically
reallocate VWM capacity by assigning more capacity to
the feature dimension that was relevant during training,
then the interaction terms (i.e., Delta-Leaf-Width 3
Condition and Delta-Leaf-Angle 3 Condition) should
be essential. That is,M1 should outperformM2 and
M3. Otherwise, the performances of the models should
not significantly differ.

As predicted,M1 (AIC score¼ 3461.9) performed
better thanM2 (AIC score¼ 3467.4), with the
difference in their performances being statistically
significant based on a likelihood ratio test, v2(2)¼ 9.46,
p¼ 0.009.M1 also performed significantly better than
M3 (AIC score¼ 3465.7), and v2(3)¼ 9.8242, p¼ 0.02.
The performances ofM2 andM3 did not significantly
differ (p¼ 0.55). Consistent with our hypothesis, these
results indicate that subjects allocated more VWM
capacity toward remembering the feature values of
objects when those features were relevant for deter-
mining objects’ category membership. In other words,
subjects dynamically reallocated their limited VWM
capacity based on the categorical structure of the to-be-
remembered items.

Rate-distortion analysis

We further analyzed our data using the same rate-
distortion model as used in Experiment 1. However, in
contrast to the previous experiment, here stimuli were
chosen at random from a 2-D space (p[x]¼ 1 / N for all
stimuli x). Furthermore, we assumed that subjects
adopted a perfect model of the stimulus statistics, hence
~pðxÞ ¼ pðxÞ ¼ 1=121 (there were 121 possible stimuli).
Since our goal in this experiment was to measure
changes in subjects’ cost functions, the cost function
was also estimated from the data (rather than assuming
a squared error cost function as in Experiment 1). For
each plant stimulus x, the cost function specifies the
cost of each possible memory error x̂ 6¼ x. In the
general case, fully specifying such a cost function
requires 1213 120¼ 14,520 parameters. Thus we made
two simplifying assumptions.

First, we assumed that costs must satisfy a metric
space. This approach builds directly on Shepard’s
universal law of generalization (Shepard, 1987). In our
model, the cost for misremembering stimulus x as a
different stimulus x̂ defines the Euclidean distance
between the two stimuli within a 2-D ‘‘perceptual’’
space. In addition, we assumed that the costs for each
stimulus dimension are independent so that, for
example, the cost for misremembering a wide leaf for a
narrow one is independent of the leaf angle. With these
assumptions, the cost function can be compactly
specified by 10 þ 10 interstimulus distances.

As indicated here and discussed below, these
parameters define the ‘‘perceptual coordinates’’ of each
plant stimulus. If the cost of misremembering one
stimulus as another is small, then the two stimuli will be
close together in a perceptual space (i.e., the stimuli will
be regarded as perceptually similar). In contrast, if the
cost of confusing two stimuli is large, then the stimuli
will be far apart in this space. We hypothesized that
category training would induce changes in this per-
ceptual space, such that category-relevant features
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would become more distinct. The model in this
experiment required estimating 22 parameters: channel
capacity C, the prior probability of a change trial
pchange, and the 20 parameters characterizing the cost
function. We fit the model to the aggregated data from
all subjects in each condition (a minimum of 2,200
trials). Model parameters were inferred using maxi-
mum likelihood estimation.

The estimated channel capacity for the leaf-angle
relevant condition was 4.16 bits, while the capacity for
the leaf-width relevant condition was 4.06 bits. Given
these highly similar values, the model did not account
for differences between the conditions by assuming that
total memory capacity differed. The parameter pchange
was also nearly identical between conditions: 0.21 in the
leaf-angle relevant condition, and 0.20 in the leaf-width

relevant condition. Hence, according to the model,
performance in the two conditions differed only in
terms of the implicit cost function for memory error.

The estimated ‘‘perceptual spaces’’ for the stimuli are
shown in Figure 7a. Each point in this grid represents
the location of a specific plant stimulus in psychological
space. Points that are closer together are more
perceptually (or mnemonically) similar, and hence
more likely to be confused. The points are arranged
with leaf angle varying along the horizontal axis and
leaf width varying along the vertical axis. The cost
function for the model Lðx; x̂Þ is defined as the
Euclidean distance between stimuli x and x̂ in this
space. The left panel shows the estimated perceptual
space for the leaf-angle relevant condition, while the
right panel shows the leaf-width condition. When leaf

Figure 7. (a) Changes in perceptual space induced by category training. Each point in the grid represents a stimulus. The cost function

for VWM error, Lðx; x̂Þ, defines the Euclidean distance between points in this space. Training in the condition where leaf width is

relevant (right panel) leads to an expansion in perceptual space along this dimension such that memory errors in leaf width are more

costly relative to the condition where leaf angle is relevant. (b) Probability of reporting ‘‘different’’ or ‘‘change’’ as a function of

changes to leaf angle and leaf width, estimated according to the model. The figure illustrates that observers are more sensitive to

changes in leaf angle in the leaf-angle relevant condition (left panel). This adaptation is accompanied by a decrease in sensitivity to

changes in leaf width when compared to the data from the leaf-width relevant condition (right panel).
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angle is task-relevant, distances along this dimension
are expanded (by a factor of about 1.253) relative to
distances along the dimension of leaf width. When leaf
width is the relevant dimension, perceptual distances
along both dimensions are nearly equal (the perceptual
space is more nearly square).

It seems that in both conditions leaf angle is the
more salient or discriminable dimension. This could be
a low-level psychophysical property of the plant
stimuli. Alternatively, it may be that leaf angle is more
meaningful semantically (any keeper of house plants
will affirm that drooping leaves are an ominous sign).
The more important point is that whatever a priori bias
exists, it is substantially modified by task experience in
an adaptive manner.3

Figure 7b shows how these differences in cost
functions impact memory performance. Each panel
shows a plot of the probability that the model reports
‘‘change’’ as a function of the size of the perturbation to
leaf angle (x-axis) and leaf width (y-axis). Intuitively,
large changes are very likely to be detected. More
interesting is that the ‘‘just noticeable difference’’ in
stimulus space differs between the two conditions
(compare left and right panels). As hypothesized,
smaller changes to leaf angle are more noticeable when
subjects are trained to categorize plants based on their
leaf angle. This adaptation is accompanied by a
decrease in sensitivity to changes in leaf width when
compared to the data from the leaf-width relevant
condition.

Importantly, the difference between the left and right
panels in Figure 7b is not due to differences in overall
memory capacity. Rather, the model demonstrates that
subjects possess a fixed memory capacity, and flexibly
allocate memory resources to different feature dimen-
sions in an adaptive manner.

To further validate our model, Figure 8a and b
provide quantitative comparisons of human and model
performances (solid vs. dashed lines). Figure 8a plots
the probability that the model and human subjects
report ‘‘change’’ as a function of the size of change
made to a given feature dimension, averaging over all
nonzero change magnitudes for the other feature
dimension. As expected, changes in leaf angle are more
likely to be reported when subjects are trained in the
leaf-angle relevant condition (left panel). Figure 8b
adopts a signal detection framework analysis (Mac-
millan & Creelman, 2004), and reports sensitivity (d0) to
each level of stimulus change. As predicted by rate-
distortion theory, increases in sensitivity to changes in
leaf angle were accompanied by decreases in sensitivity
to changes in leaf width.

The analyses above were conducted based on group-
level data obtained by aggregating responses from all
experimental subjects. We also fit a simplified version
of the model to the data from each individual subject.
Since each subject completed only 44 change-detection
trials, it was necessary to restrict the number of free
parameters in the simplified model. The perceptual
spaces illustrated in Figure 7a suggest that the primary
effect of the category training was to scale the
perceptual space in the task-relevant dimension. Hence,
our simplified model assumed a cost function where
distances along the leaf-angle dimension were evenly
spaced, and distances along the leaf-width dimension
were a scalar multiple r:1 of that distance, where the
parameter r is estimated by the model. In addition, the
channel capacity, and prior probability of change,
pchange, were estimated from the data. The log of the
aspect ratio parameter, log r, was compared between
the two conditions using a t test. A log transform was
applied because ratios are linear on a logarithmic scale
(i.e., following a log transformation, the difference

Figure 8. (a) Probability of reporting ‘‘change’’ as a function of the size of the change to each stimulus dimension. The x-axis indicates

the size of the change in discrete stimulus units. Probabilities for a given feature dimension are obtained by averaging over all change

magnitudes to the other dimension. (b) Corresponding average sensitivity (d0) to changes in each stimulus dimension and in each

condition. As predicted by our model, performance in the leaf-width relevant condition (right panel) is characterized by higher

sensitivity to changes in leaf width, accompanied by reduced sensitivity to changes in leaf angle, compared to performance in the

leaf-angle condition.
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between a ratio of 1/2:1 and 1:1 equals the difference
between a ratio of 2:1 and 1:1). The results of this
comparison indicate that the aspect ratio was signifi-
cantly larger in the leaf-width relevant condition, t(99)
¼ 2.15, p ¼ 0.034. In other words, on a subject-by-
subject basis, leaf widths were psychologically more
distinct in the condition where subjects were trained to
categorize based on leaf width. Estimates of subjects’
capacity and pchange were highly similar to estimates
based on the aggregated data, and did not differ
between conditions (mean capacity ¼ 4.02, 4.11 bits in
the leaf-angle and leaf-width relevant conditions,
respectively; mean pchange ¼ 0.24, 0.22).

Discussion

Here, we have described our normative framework
for the study of VWM based on rate-distortion theory,
an extension of conventional Bayesian approaches that
uses information theory to characterize rate-limited (or
capacity-limited) processing. We demonstrated that
VWM is adaptive in two ways predicted by our
framework: It reallocates its capacity based on the
statistical regularities of the to-be-remembered items
and it reallocates its capacity based on the demands of
the task. Importantly, our results are framed not in
terms of ad hoc theories of cognitive processing or
measures of memory capacity, but rather derive from
foundational principles of information theory (Cover &
Thomas, 1991; MacKay, 2003; Shannon & Weaver,
1949). Given a constraint on information processing,
VWM seeks to minimize the cost of (inevitable)
memory errors. As the costs of memory error are
fundamentally task-specific, this requires VWM to be
an adaptive information processing system.

An intuitive understanding of the results in Exper-
iment 2 is that subjects adaptively altered the shape of
their error distribution in memory (Figure 7b). We find
an intriguing parallel between this result and the
concept of an ‘‘uncontrolled manifold’’ in motor
control (Scholz & Schöner, 1999; Todorov & Jordan,
2002), whereby people are able to reduce motor
variability in task-relevant dimensions, at the expense
of increasing motor variability along irrelevant dimen-
sions. At the least, both examples demonstrate a system
that adapts to an external task by adapting to and
exploiting its own limitations.

The reader may note that the estimated capacities in
Experiment 2 were larger than those in Experiment 1. If
we only probe a subset of stimulus dimensions,
however, we should expect to underestimate the true
VWM capacity. For example, Experiment 1 only
probed the information that subjects stored about leaf
width, even though subjects likely also stored (at least

partial) information about leaf angle, color, etc.
Therefore, it should be expected that Experiment 2,
which probed both leaf width and leaf angle, should be
closer to the true capacity in its estimates. Since it is
impossible to simultaneously probe all knowledge
stored in a memory representation (including knowl-
edge that is not relevant to the experimental task), it
may be difficult to estimate the full capacity of VWM in
a task-independent manner.

Previous work has demonstrated that VWM can
adaptively reallocate its resources in a task-dependent
manner that may be linked to visual attention (Bays,
2014; Bays, Gorgoraptis, Wee, Marshall, & Husain,
2011; Bays & Husain, 2008; Gorgoraptis, Catalao,
Bays, & Husain, 2011; Melcher & Piazza, 2011). For
example, Bays, Gorgoraptis, et al. (2011) found that
attentional cuing of one item in a display led to better
recall of that item and that this recall advantage was
maintained only if the item was task-relevant. Bays and
Husain (2008) reported data indicating that VWM
resources can be reallocated based on selective atten-
tion and toward targets of upcoming eye movements.

Our data from Experiment 2 are consistent with
these earlier works, suggesting a role for attention in
accounting for our results. For instance, subjects
trained in the leaf-angle relevant condition may have
learned that leaf angle is the relevant feature for the
experimental task, and that leaf width can be ignored.
Of course, this interpretation is entirely consistent with
the rate-distortion account provided here in which
VWM allocates its capacity in a task-dependent
manner. Both VWM and visual attention involve
prioritization of information in the presence of
competing signals, as well as sustaining relevant
perceptual information across time. Although visual
attention and VWM have traditionally been regarded
as distinct cognitive processes, a growing body of work
(Awh, Vogel, & Oh, 2006; Chun, 2011; Kiyonaga &
Egner, 2013; Pashler, Johnston, & Ruthruff, 2001) in
the past decade has revealed widespread overlap
between these two systems. Pashler et al. (2001) argued
that attentional mechanisms evolved out of necessity to
leverage limited processing capacity to relevant infor-
mation relating to ongoing behavioral goals.

Consequently, visual attention may not be distinct
from the adaptive allocation of cognitive resources, and
rate-distortion theory provides a plausible computa-
tional account of this process. Given that memory and
attention are both rate-limited, future work could focus
on a unified rate-distortion framework providing
accounts of shared aspects of visual memory and visual
attention. We speculate that the work presented here is
an early step in this direction.4

Some research has assumed that VWM has a single
pool of memory resources shared by all stimulus
dimensions. In contrast, several investigators have
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recently considered the hypothesis that VWM has
separate and independent pools of resources for
different visual features, such as orientation and color
(Bays, Wu, & Husain, 2011; Fougnie, Asplund, &
Marois, 2010; Shin & Ma, 2017; Wheeler & Treisman,
2002). The experimental findings regarding this hy-
pothesis are inconclusive. Consequently, researchers
have begun considering hybrid accounts in which
VWM has separate pools of resources for different
features, but these pools may be linked and thus are not
independent (Brady, Konkle, & Alvarez, 2011; Shin &
Ma, 2017). In the work reported here, it did not seem
plausible that VWM has independent capacities for leaf
width and leaf angle. We therefore modeled VWM as
having a single capacity for both features, and found
that this modeling assumption was sufficient to explain
our empirical data. Future work on VWM will need to
better define which features share memory resources
and which features have their own resource pools and
capacities.

An emerging body of research on VWM has
demonstrated that memory is sensitive to the statistics
of visual information (Brady & Alvarez, 2011; Brady &
Tenenbaum, 2013; Corbett, 2016; Huttenlocher et al.,
2000; Orbán et al., 2008; Orhan & Jacobs, 2013;
Sanocki et al., 2010; Victor & Conte, 2004), and some
work has attempted to tie this phenomenon to
fundamental principles of information theory (Brady et
al., 2009; Sims et al., 2012; Victor & Conte, 2004).
Other research has shown that the precision of VWM is
task-specific (Fougnie et al., 2010; Sims, 2015; Swan et
al., 2016), with greater memory precision for features
that are task-relevant. A closely related line of research
has also explored the influence of categories on
perception and VWM (Bae et al., 2015; Goldstone,
1994; Huttenlocher et al., 2000; Lipinski, Simmering,
Johnson, & Spencer, 2010; Nosofsky, 1987; Persaud &
Hemmer, 2016). In particular, Goldstone (1994)
described the phenomenon of acquired distinctiveness,
or increased perceptual distinctiveness for items that
reside in different categories. To explain this and
related findings, Persaud and Hemmer (2016) proposed
that prior knowledge in the form of categories and
uncertain working memory representations may be
combined through Bayesian inference. While conven-
tional Bayesian inference provides a normative theory
for reasoning about and acting on uncertainty, it is the
subfield of rate-distortion theory that is specialized for
providing a theory of processing when resources are
limited, and of how resources can be allocated in a
manner that approaches the theoretical bounds on
efficiency defined by information theory. Our approach
uniquely serves as a normative and principled compu-
tational framework for characterizing VWM as a
limited but efficient processing system.

Although the application of rate-distortion theory is
relatively recent in the context of VWM (Sims et al.,
2012), the general idea that cognition is adapted to the
properties of the task environment is not new. In
defining bounded rationality, Herbert Simon wrote,
‘‘The human mind is an adaptive system. It chooses
behaviors in the light of its goals, and as appropriate to
the particular context in which it is working’’ (Simon,
1992). More recently, this concept has formed the basis
of ‘‘computational rationality’’ (Gershman, Horvitz, &
Tenenbaum, 2015), or the idea that an optimal
cognitive system is one that is optimized with respect to
both the external task, as well as its own processing
limitations. Our analysis of VWM falls neatly within
this general approach.

Lastly, our results have implications for under-
standing the nature of perceptual expertise. Prior
research has shown that perceptual experts (such as
individuals who are experts at recognizing cars or
birds) demonstrate a range of behavioral (Bukach,
Gauthier, & Tarr, 2006; Curby & Gauthier, 2010) as
well as neural differences (Herzmann & Curran, 2011).
Rate-distortion theory provides a new vocabulary for
understanding these differences. In particular, it
suggests that an expert might have superior VWM
performance compared to a novice for any combina-
tion of three reasons: greater channel capacity, greater
knowledge of statistical regularities, or a cost function
that is more finely tuned to the demands of a task. The
current results provide positive evidence for the latter
two. However, the present study is limited in terms of
working with participants who received only minimal
training. The application of this same approach to a
truly expert population represents a fruitful area of
investigation.

Keywords: visual working memory, visual learning,
ideal observer
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Footnotes

1 Here, ‘‘bit allocation’’ specifically refers to changes
in the pattern of memory errors resulting from
adapting VWM to the current task. How someone
decides to ‘‘allocate’’ their capacity is synonymous with
how they decide to distribute their errors, given what
they have observed and given limits on their ability to
store visual information with perfect fidelity. These
decisions are crucial for maximizing performance. A
mathematical description of this process is given in the
following sections, and in particular the error distri-
bution for memory is given by the channel, pðx̂jxÞ:

2 The rate-distortion model was implemented using
the ‘‘RateDistortion’’ library (Sims, 2016) of the R
statistical computing environment. This library con-
tains algorithms for efficiently solving the constrained
optimization problem described by Equation 1. A
tutorial introduction to this library and its use in
modeling human perception is described in Sims (2016).
Model parameters were obtained by maximum likeli-
hood estimation, using L-BFGS or Nelder-Mead
optimization implemented within R (via ‘‘optim’’).
Complete code for the model is available from the third
author’s website.

3 A reader may note that, in each condition, subjects
remembered aspects of the task-irrelevant stimulus
dimension, contrary to the predictions of rate-distor-
tion theory. It should be kept in mind that subjects
received only a small amount of training (approxi-
mately 20–30 min). With additional training, we would
expect subjects to show additional adaptation.

4 It is not our intention to claim that visual attention
and visual memory are one and the same. Rather, we
believe that the terms ‘‘attention’’ and ‘‘memory’’ are
vaguely defined in the cognitive science literature, each
potentially covering many phenomena and mecha-
nisms. Because the terms are so vague, they overlap.
For instance, the results of many experiments can be
accounted for by stating that subjects ‘‘allocated more
attentional capacity to stimulus dimension A than B’’
or, equally validly, by stating that subjects ‘‘allocated
more VWM capacity to stimulus dimension A than B.’’
Which description is used in an article often depends on
the personal biases of the article’s authors. Additional
work (Chun, 2011) has addressed this issue by working
towards an organizing taxonomic framework for
differentiating between these two mechanisms.
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Appendix A

Comparison of a Bayesian ideal observer model
to rate-distortion theory

This appendix derives the contrasting predictions of
a Bayesian ideal observer and a model based on rate-
distortion theory. The Bayesian observer assumes that
memory representations are Gaussian-noise corrupted
versions of afferent sensory signals. The rate-distortion
model is shown to exhibit a similar mathematical form
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with one critical exception: For an optimal, but
capacity-limited observer, the magnitude of encoding
noise scales with the width of the stimulus distribution.
As a result, the two models generate qualitatively
different predictions for performance changes as
sensory statistics are manipulated, a scenario which
forms the basis of Experiment 1.

Consider a continuous univariate sensory signal, x,
sampled from a Gaussian distribution with arbitrary
mean and variance such that x ; Normal(l, r2). An
abstract visual memory task is modeled in which an
observer is shown a sample from this distribution and
tasked with remembering it as accurately as possible.
The task is nontrivial because the observer’s memory
(and hence response) is related only probabilistically to
the sensory signal according to a conditional proba-
bility distribution, pðx̂jxÞ, where the details of this
distribution are defined according to one of two
different models of visual memory performance. The
different models considered in this appendix are:

� A Bayesian observer with fixed Gaussian ‘‘memory
noise,’’ and
� An optimal, but capacity-limited observer based on
rate-distortion theory.

For the purposes of this analysis, it is assumed that
the observer seeks to produce an estimate x̂ that
minimizes the squared error between the sensory signal
and its reported value. The use of a squared error
objective is motivated by its mathematical convenience,
but none of the essential features of the analysis depend
upon this particular assumption. This objective is the
loss function for the observer,

Lðx; x̂Þ ¼ ðx̂� xÞ2: ð3Þ
Using this loss function, the performance of the

observer is defined as the mean squared error:

D ¼ Ex;x̂ L x; x̂ð Þ½ � ¼ Ex;x̂ x̂� xð Þ2
h i

¼
ZZ ‘

�‘

ðx̂� xÞ2pðx̂jxÞpðxÞ dx̂ dx: ð4Þ

This quantity also corresponds to the observer’s
expected variance.

In the following two subsections, we derive the
optimal observer according to each model. Of partic-
ular interest is the relationship between the mean
squared error of the observer, D, and the variance of
the prior over the signal distribution, r2.

Bayesian observer model

We first consider an observer model in which the
sensory signal is corrupted by zero-mean additive
Gaussian memory noise during the memory encoding
process, resulting in a noisy memory representation xe.

The memory representation is related to the sensory
signal according to:

pðxejxÞ ¼ Normalðx;r2
eÞ ¼

e
�ðxe�xÞ

2

2r2effiffiffiffiffiffi
2p
p

re

: ð5Þ

The Bayesian posterior probability distribution over
the signal x, given the noisy memory representation xe
is given by:

pðxjxeÞ¼
pðxejxÞpðxÞR ‘

�‘
pðxejxÞpðxÞ dx

: ð6Þ

For a given noisy memory representation xe, a
Bayes-optimal observer should produce an estimate x̂
of the true signal x, which minimizes the expected loss.
For the squared error loss function, this expected loss
as a function of the estimate x̂ is:

Lossðx̂jxeÞ ¼
Z ‘

�‘

ðx̂� xÞ2pðxjxeÞ dx ð7Þ

This loss function reaches a minimum at the point
where its first derivative is zero. Solving for the
minimum mean squared error estimator, one obtains:

x̂ ¼ xer2 þ lr2
e

r2 þ r2
e

: ð8Þ

Note that this is the optimal estimator as a function
of the latent quantity xe. The corresponding distribu-
tion in terms of the observed sensory signal x, or
pðx̂jxÞ, is given by:

pðx̂jxÞ ¼
Z ‘

�‘

d x̂� xer2 þ lr2
e

r2 þ r2
e

� �
pðxejxÞ dxe

¼
e�

xr2þlr2
e�x̂ðr2þr2

eÞð Þ2
2r4r2

e
r2 þ r2

e

� �
ffiffiffiffiffiffi
2p
p

r2re

; ð9Þ

where d (�) indicates the Dirac delta function. Lastly,
the expected cost for this observer is obtained by
evaluating the expression in Equation 4, with the
distribution pðx̂jxÞ defined by Equation 9. One obtains
for the ideal Bayesian observer,

DBayes ¼ Ex;x̂ Lðx; x̂Þ½ � ¼ r2r2
e

r2 þ r2
e

: ð10Þ

Note in particular that when the magnitude of
encoding noise is small relative to the signal prior
ðre , 1

10rÞ, performance of the observer is essentially
flat with respect to changes in the variance of the signal
distribution. This is illustrated in Figure 9a.

Rate-distortion observer model

We now consider an observer with a constraint
placed on the information rate of the perceptual
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channel. The information rate of a channel is defined in
terms of the mutual information, I(x; x̂), of the
channel’s input and output:

Iðx; x̂Þ ¼
ZZ ‘

�‘

pðx̂jxÞpðxÞ log
pðx̂jxÞpðxÞ
pðx̂ÞpðxÞ

� �
dxdx̂:

ð11Þ

A finite bound is placed on the information rate of
the channel, such that Iðx; x̂Þ � R for some finite
positive value R. Subject to this bound, the goal of the
observer is to minimize expected cost, defined as above
in terms of the mean squared error. The optimal
channel, p?ðx̂jxÞ according to this criterion satisfies

p?ðx̂jxÞ ¼ inf
p

Ex;x̂ ðx̂� xÞ2
h i

subject to Iðx; x̂Þ � R:
ð12Þ

Equation 12 is a fundamental problem in the field of
rate-distortion theory. In general, this equation cannot
be solved analytically. However, for the special case
considered here (a Gaussian signal prior, and squared
error loss function), a closed-form solution can be
obtained. For this specific problem, one can derive the
so-called rate-distortion curve as the absolute minimum
information rate (R) necessary to achieve a specified
level of performance (D):

RðDÞ ¼ 1

2
log

r2

D
ð13Þ

It turns out that the optimal channel that minimizes
the expected cost and achieves the above rate-distortion
bound has the same form as the Bayesian observer
model described in the previous section, with the critical
difference that the magnitude of the Gaussian encoding
noise is no longer a fixed constant, but is rather a
function of the variance of the signal distribution.

The proof of this result proceeds as follows. We first
assume that the claim is true—namely, that for a
Gaussian sensory signal and squared error loss
function, the optimal channel in the rate-distortion
sense can be defined in terms of Gaussian encoding
noise followed by an optimal Bayesian decoder. We
then derive the conditions under which this channel
achieves the constraint on information rate given in
Equation 12, and show that these conditions are
achievable. It is then shown that the channel saturates
the rate-distortion bound—meaning no other channel
could achieve lower expected cost at the same
information rate. This approach builds upon the results
already derived in the previous section.

To begin, consider the channel distribution in
Equation 9 above. The marginal distribution for this
channel is

pðx̂Þ ¼
Z ‘

�‘

pðx̂jxÞpðxÞ dx ð14Þ

¼ e�
ðx̂�lÞ2ðr2þr2e Þ

2r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

e

p
ffiffiffiffiffiffi
2p
p

r2
: ð15Þ

With pðx̂jxÞ and pðx̂Þ defined, the mutual information
of the channel determined according to Equation 11 is

Iðx; x̂Þ ¼ 1

2
log 1þ r2

r2
e

� �
: ð16Þ

In order to satisfy the constraint on information
rate, it must be the case that Iðx; x̂Þ � R: This can be
achieved by setting

re ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1þ e2R
p : ð17Þ

Note that according to the model, the encoding noise
of the channel depends on both the constraint on

Figure 9. Expected cost (mean squared error) for a Bayesian ideal observer (left) and a model based on rate-distortion theory (right),

as a function of the standard deviation of the prior distribution of sensory signals, r. (a) Performance of the Bayesian observer model.

Performance is shown for four levels of the encoding noise, re. (b) Performance of the rate-distortion model. Performance is shown

for four levels of the information rate of the channel, R, measured in bits.
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information rate, as well as the distribution of the
sensory signals (via its dependence on r). This equation
defines the ‘‘effective encoding noise’’ for a channel
with information rate R.

Hence, the channel described is achievable by
choosing the encoding noise to satisfy the above. It
remains to be shown that it is also optimal in the rate-
distortion sense. To do so, note that the effective
encoding noise can be used to re-parameterize the
expected cost for a Bayesian observer (Equation 10,
above) in terms of its equivalent information rate:

DRD ¼ Ex;x̂ Lðx; x̂Þ½ � ¼ r2r2
e

r2 þ r2
e

¼ e�2Rr2: ð18Þ

The above equation defines the minimum expected
loss for the channel (the channel ‘‘distortion’’) in terms
of its information rate. One can also solve this equation
for R and obtain the information rate required for the
channel to reach a specified level of distortion D:

R ¼ 1

2
log

r2

DRD
: ð19Þ

Hence, the channel achieves the rate-distortion
bound exactly, and the proof is concluded.

Figure 9b illustrates the performance of the rate-
distortion model as the standard deviation of the
sensory signal is varied.

Comparison of a Bayesian observer and rate-distortion theory

The results in Figure 9 illustrate a fundamental
qualitative difference between a Bayesian observer
model and a model based on rate-distortion theory.
For the Bayesian model, performance is asymptotically
independent of the statistics of the sensory signal. This
performance is limited primarily by the magnitude of
internal encoding noise. For the rate-distortion model,
the magnitude of encoding noise intrinsically depends
on the statistics of the sensory signal. This is not an
arbitrary assumption of this particular model, but
rather reflects the predicted behavior of an optimally
efficient communication channel.

To more directly compare the approaches, one can
calibrate the rate-distortion model to perform iden-
tically to the Bayesian observer model at a particular
level of encoding noise and width of the stimulus
prior, and compare the performances of the two
models as the prior is varied. This comparison is
illustrated in Figure 2. (To generate these data, the
capacity of the rate-distortion model was set to 2.2
bits, close to the value estimated from subjects’ data
in Experiment 1.) The red curve in this figure gives
the performance of the rate-distortion model,
whereas the black curve gives the performance of the
Bayesian observer model. The Bayesian model was

calibrated to produce identical performance as the
rate-distortion model at r ¼ 10 (the value used in
Experiment 1). This was achieved by ensuring that
both models have the same effective encoding noise.
As can be seen in the figure, increases to the standard
deviation of the stimulus distribution lead to diver-
gent predictions between the two models. For the
rate-distortion model, memory performance declines
monotonically with increases to the width of the
stimulus distribution. In contrast, the Bayesian
observer’s performance is relatively invariant to such
changes.

Notably, the empirical data from Experiment 1 are
qualitatively consistent with the rate-distortion model,
and inconsistent with the Bayesian observer model that
assumes memory encoding noise that is independent of
the stimulus distribution. Recall that subjects in the
uniform condition (where the stimulus distribution has
a large variance) of Experiment 1 showed significantly
worse memory performance compared to the perfor-
mances of the subjects in the other conditions (where
the stimulus distributions had smaller variance). This
decline in memory performance is directly predicted by
rate-distortion theory, but at odds with a standard
Bayesian account of visual memory. Hence, the data
are more parsimoniously explained by a capacity-
limited, but efficient information communication
channel.

Comparison of Bayesian and rate-distortion
modeling results

Recall that we used maximum likelihood estima-
tion to estimate the values of the rate-distortion
model’s parameters based on subjects’ responses
(Table 1). To further compare the rate-distortion and
Bayesian observer models, we also used maximum
likelihood estimation to fit the Bayesian model to the
experimental data. Two versions of the Bayesian
model were considered, one in which re and pchange
were shared across experimental conditions, and one
in which only pchange was shared across conditions.
The decision rule and choice for pðyjx;CÞ for the
Bayesian versions were identical to those of the rate-
distortion model. We predicted that (a) when re is
shared across conditions, the likelihood should be
lower than that of the rate-distortion model; (b) when
re is shared across conditions, the model should
predict only a small decrement in overall percent
correct responses in the uniform condition compared
to the Gaussian conditions; and (c) when re is allowed
to vary by condition, it should be highest in the
uniform condition.

All of our predictions are born out by the results.
Tables 3 and 4 report maximum likelihood estimates
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for the two versions of the Bayesian model. The log-
likelihood of the Bayesian model that shared memory
noise across conditions was �14,901, while that of the
rate-distortion model was �14,799. When the memory
noise was allowed to vary, its variance was higher in the
uniform condition than any of the normal conditions.
Furthermore, within the normal conditions, memory
noise increased in accordance with leaf width, which is
consistent with the finding in Experiment 1 that
subjects performed better on trials with skinnier leaves.
Note that the standard deviation of the memory noise
when it was shared (4.21) is very close to the average of
its values when it was varied across conditions (4.15),
and that these values are close to what is predicted by
Equation 17 (assuming r¼ 20 and R¼ 2.2 bits, then re

¼ 4.46). Also note that the value for pchange in both
versions is very close to that of the rate-distortion
model.

As expected, we found that the Bayesian model
with global re predicted only a small decrement in the
overall proportion of correct responses in the uniform
condition, whereas both the rate-distortion model
and the other version of the Bayesian model better
matched the subjects’ proportion-correct scores. For
each of these three models, we simulated responses by
sampling from p(Cjx,y). These results illustrate that
the Bayesian model fails to account for subjects’
worse performance in the uniform condition (see
Table 2).

We also found some of the estimates of l and r in
some conditions of the Bayesian models to be less
intuitive than their counterparts in the rate-distortion
model. For example, in both versions of the model, the

estimate of r was large in the mean-75 condition, and
the estimate of l was low, relative to what we found in
the rate-distortion model.

Overall, we conclude that the rate-distortion model
provides a better account of the experimental data than
either version of the Bayesian model. When matched
for equal numbers of parameters, the Bayesian model
has lower likelihood than the rate-distortion model.
And when the memory noise is allowed to vary by
condition (which is theoretically less parsimonious), the
memory noise varied across conditions in exactly the
way predicted by our preceding theoretical analysis.
These results suggest capacity limits are an important
factor in accounting for people’s visual memory
performances.

Appendix B

Derivation of the Bayesian decision rule

Figure 5 provides a diagram of the complete
information-theoretic model, consisting of a capacity
limited channel (VWM) and subsequent Bayesian
decision rule. In this appendix we derive the optimal
Bayesian decision rule for determining whether a
‘‘change’’ trial has occurred. We define the following
random variables: C is a binary random variable
indicating whether or not the current trial is a change
trial. The variables x and x̂ indicate the memory
stimulus and its noisy memory representation, respec-
tively. The probe stimulus presented to subjects is
indicated by y. A probabilistic graphical model relating
these variables is shown in Figure 10.

Based on this graphical model, the joint probability
distribution over all variables is given by

pðx̂;x; y;CÞ ¼ pðx̂jxÞ pðyjx;CÞ pðxÞ pðCÞ: ð20Þ
From this, the conditional probability of a change trial
given the noisy memory representation and the probe
stimulus is derived as follows:

Mean 30 Mean 50 Mean 75 Uniform

Subjects 0.84 0.81 0.78 0.74

Rate-distortion 0.82 0.82 0.78 0.74

Bayesian (re local) 0.83 0.82 0.78 0.74

Bayesian (re global) 0.79 0.80 0.78 0.78

Table 2. Proportion-correct responses predicted by each model,
compared to subjects. Notes: The Bayesian model with fixed
memory noise fails to predict subjects’ worse performance in
the uniform condition.

Mean 30 Mean 50 Mean 75 Uniform Global

l 30.7 49.5 16.4 12.2

r 16.0 16.2 45.9 35.2

re 4.21

pchange 0.40

Table 3. Maximum likelihood estimates of the Bayesian model’s
parameters in each of the four experimental conditions of
Experiment 1 when both the memory noise, re, and pchange are
shared across conditions. Notes: The last column (Global) gives
values of parameters that were shared across conditions.

Mean 30 Mean 50 Mean 75 Uniform Global

l 38.7 48.4 36.8 24.2

r 37.6 21.4 38.3 35.4

re 3.63 3.86 4.18 4.93

pchange 0.40

Table 4. Maximum likelihood estimates of the Bayesian model’s
parameters in each of the four experimental conditions of
Experiment 1 when the memory noise, re, is not shared but
rather is allowed to vary across conditions.
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pðx̂; y;CÞ ¼
X
x

pðx̂jxÞ pðyjx;CÞ pðxÞ pðCÞ ð21Þ

pðCjx̂; yÞ ¼ pðx̂; y;CÞ
pðx̂; yÞ ð22Þ

¼ pðx̂; y;CÞP
C

pðx̂; y;CÞ ð23Þ

¼

P
x
pðx̂jxÞ pðyjx;CÞ pðxÞ pðCÞ

P
C

P
x
pðx̂jxÞ pðyjx;CÞ pðxÞ pðCÞ : ð24Þ

To complete the derivation we need to specify the
form for each term in Equation 24. As noted in the
main text, the prior probability of a change trial, p(C¼
1), is treated as a parameter in the model, pchange. The
distribution of the probe given the memory stimulus
and change trial status is:

pðyjx;CÞ ¼

1 ðx ¼ yÞ & ðC ¼ 0Þ
0 ðx 6¼ yÞ & ðC ¼ 0Þ
0 ðx ¼ yÞ & ðC ¼ 1Þ

fðxÞ ðx 6¼ yÞ & ðC ¼ 1Þ

8>><
>>:

: ð25Þ

To produce the values reported in the main text, f(x)
was set to the true (experiment-defined) probability
of a probe given a target. (We found qualitatively
similar results for several other choices of f[x].) The
prior distribution over stimuli, p(x), was modeled as
a normal distribution in Experiment 1, with pa-
rameters l and r, normalized over the space of
possible stimulus values. In Experiment 2, the prior
distribution was uniform, p(x) ¼ 1/N. Lastly, the
conditional distribution over memory representa-
tions, pðx̂jxÞ, was obtained by solving the rate-
distortion equation given in the main text (Equation
1). Consequently, the Bayesian decision rule is
optimal with respect to the structure of noise and
variability in VWM. This equation was solved using
the ‘‘RateDistortion’’ package available for the R
statistical programming environment, and described
in Sims (2016).

Equation 24 defines the probability that a ‘‘change’’
trial has occurred given a noisy memory representa-
tion and probe stimulus. The model assumes that
subjects exhibit probability matching; hence, this
equation also describes the likelihood of a ‘‘change’’
response for a given memory representation and probe
stimulus. To fit this model to the data it is necessary to
marginalize over the distribution of memory repre-
sentations for a given memory stimulus (since internal
memory representations are not directly observable).
Hence,

pðCjx; yÞ ¼
X
x̂

pðCjx̂; yÞpðx̂jxÞ: ð26Þ

Equation 26 defines the likelihood function for the
data. Model parameters were determined by maxi-
mum likelihood estimation using this equation.

Figure 10. Probabilistic graphical model illustrating the rela-

tionship between random variables in the Bayesian change

detection decision rule.
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