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Efficient Data Compression in Perception and Perceptual Memory

Christopher J. Bates and Robert A. Jacobs
University of Rochester

Efficient data compression is essential for capacity-limited systems, such as biological perception and
perceptual memory. We hypothesize that the need for efficient compression shapes biological systems in
many of the same ways that it shapes engineered systems. If true, then the tools that engineers use to
analyze and design systems, namely rate-distortion theory (RDT), can profitably be used to understand
human perception and memory. The first portion of this article discusses how three general principles for
efficient data compression provide accounts for many important behavioral phenomena and experimental
results. We also discuss how these principles are embodied in RDT. The second portion notes that exact
RDT methods are computationally feasible only in low-dimensional stimulus spaces. To date, researchers
have used deep neural networks to approximately implement RDT in high-dimensional spaces, but these
implementations have been limited to tasks in which the sole goal is compression with respect to
reconstruction error. Here, we introduce a new deep neural network architecture that approximately
implements RDT. An important property of our architecture is that it is trained “end-to-end,” operating
on raw perceptual input (e.g., pixel values) rather than intermediate levels of abstraction, as is the case
with most psychological models. The article’s final portion conjectures on how efficient compression can
occur in memory over time, thereby providing motivations for multiple memory systems operating at
different time scales, and on how efficient compression may explain some attentional phenomena such
as RTs in visual search.

Keywords: memory, perception, cognitive modeling, neural networks, information theory

Biological cognitive systems are not infinite. For instance, it is
commonly hypothesized that people have finite attentional and
memory resources, and that these constraints limit what people can
process and remember. In this regard, biological systems resemble
engineered systems which are also capacity-limited. For any
capacity-limited system, biological or engineered, efficient data
compression is paramount. After all, a capacity-limited system
attempting to achieve its goals should maximize the amount of
information that it processes and stores, and this can be accom-
plished through efficient data compression. Of course, this raises
the question of what one means by “efficient.”

In engineered systems, digital resources (e.g., bandwidth, finite
memory) are limited, and thus designers of these systems allocate
these resources so as to maximize a system’s performance, a

process referred to as “bit allocation” (Gersho & Gray, 1992).
When thinking about how to best perform bit-allocation, engineers
must consider several questions. Which data items are frequent,
and thus should be encoded with short digital codes, and which
data items are infrequent, and thus can be assigned longer codes?
Which aspects of data items are important to task performance, and
thus should be encoded with high fidelity via long codes, and
which aspects are less task relevant, and thus can be encoded with
lower fidelity via short codes? To address these questions, engi-
neers have developed rate-distortion theory (RDT), a sophisticated
mathematical formalism based on information theory (Berger,
1971; Cover & Thomas, 1991; MacKay, 2003).

Consider, for example, the problem of storing sound on a
computer. This problem can be solved, for instance, using the MP3
file format which can store waveforms using roughly 10 times
fewer bits relative to an uncompressed format. This compression is
possible, in part, because most waveforms are not random, but
rather possess rich statistical structure in which some frequencies
are more common than others and transitions between frequencies
are often predictable. In addition to exploiting statistical regulari-
ties, MP3 files compactly store waveforms because they do not
attempt to encode items perfectly. To the human ear, certain
frequencies are less discriminable than others, and hence it is less
important to encode those frequencies exactly. These intuitions are
readily formalized and quantified via RDT.

A goal of this article is to present a small set of general
principles for efficient data compression that provides accounts for
many behavioral phenomena (and many experimental results in the
scientific literature) in multiple domains of perception and percep-
tual memory. Armed with these principles, we evaluate the hy-
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pothesis that the need for efficient data compression shapes bio-
logical perception and perceptual memory in many of the same ways
that it shapes engineered systems. If true, then the technical tools that
engineers use to analyze and design systems, namely RDT, can
profitably be used to understand perception and memory.

A second goal is to present a modeling framework for imple-
menting the principles. Although exact methods exist for RDT
analysis in low-dimensional stimulus spaces, approximate meth-
ods are needed for high-dimensional spaces. Previous researchers
have used deep neural networks to approximately implement RDT
in high-dimensional spaces, but these implementations have been
limited to tasks in which the sole goal is data compression with
respect to reconstruction error (e.g., Ballé, Laparra, & Simoncelli,
2016). An innovation of the research presented here is that we
introduce a new deep neural network architecture that approxi-
mately implements RDT. Our architecture discovers good data
compressions even when the data will be used for regression,
classification, recognition, or other tasks. Consequently, the model
can perform the same types of tasks as participants in experimental
studies (e.g., change-detection or recall tasks). A key property of
the model is that it is trained “end-to-end,” operating on raw
perceptual input (e.g., pixel values) rather than intermediate levels
of abstraction (e.g., orientation, color, texture, or shape), as is the
case with most psychological models. Our framework therefore
represents an early step toward scaling up models of perception
and perceptual memory toward levels of complexity faced in
real-world situations.

Finally, a crucial import of our framework is that, unlike pre-
vious work that assumes representational spaces a priori, it predicts
the representational spaces themselves from first principles. As we
show below, this property provides new traction in understanding
the relationship between different memory systems that have been
identified by memory researchers (e.g., short-term vs. long-term
visual memory). In addition, because it predicts representational
spaces, it has the potential to elucidate important aspects of both
neural representations (as revealed, for example, by representa-
tional similarity analysis applied to brain imaging [e.g., fMRI]
data; Kriegeskorte, Mur, & Bandettini, 2008) and psychological
representations (as revealed, for example, by multidimensional
scaling, tree-fitting, and clustering applied to behavioral data;
Shepard, 1980). By assuming that efficient compression plays a
key role in designing neural and psychological representations, we
may be able to better understand the computational underpinnings
of these representations.

Three Principles of Efficient Data Compression and
Their Implications for Perception and Memory

It has recently been proposed—both by others (e.g., Brady,
Konkle, & Alvarez, 2009; Mathy & Feldman, 2012; Yoo, Klysze-
jko, Curtis, & Ma, 2018) and ourselves (e.g., Bates, Lerch, Sims,
& Jacobs, 2019; C. R. Sims, Jacobs, & Knill, 2012; Orhan &
Jacobs, 2013)—that efficient data compression accounts for im-
portant aspects of visual working memory. Here, we provide a
broad explication of the role of data compression in perception and
perceptual memory, examining its underlying principles and mo-
tivations. This section lists three principles of efficient data com-
pression which fall directly out of traditional RDT analyses and

explores their implications for understanding a wide range of
behavioral phenomena.

Limited Capacity Principle

The limited capacity principle states that all physically realized
systems are finite, and thus have finite limits on processing and
storage capacities. For people, this is important because their
capacities are generally less than the information content of their
sensory environments. Consequently, people cannot perceive and
memorize all sensory inputs in a veridical manner. Instead, faulty
perception and memory—what engineers refer to as “lossy com-
pression”—is inevitable.

If perception and memory cannot be perfect, can they at least be
as good as possible given their capacity limits? Within the study of
visual perception, this question has been addressed in pioneering
work by Horace Barlow on “efficient coding” (Barlow, 1961). The
efficient coding hypothesis states that neurons represent afferent
signals in the most efficient manner possible. To increase effi-
ciency, neurons must eliminate redundancy in the information they
encode. That is, the information that a neuron encodes should be as
unique as possible from the information encoded by other neurons.
The efficient coding paradigm has been extremely productive in
understanding neural coding in early vision across many animal
species (Park & Pillow, 2017; Simoncelli & Olshausen, 2001;
Zhaoping, 2006). For instance, it provides a justification for divi-
sive normalization, a ubiquitous neural mechanism in which neigh-
boring neurons compete to be active in response to a stimulus
(Carandini & Heeger, 2012). Neurons whose receptive field sen-
sitivities most precisely overlap a stimulus’s features “win out,”
suppressing the activations of their neighbors who are less well-
suited to represent the stimulus. Efficient coding has also led to the
idea of “sparse coding,” which predicts V1 simple-cell-like recep-
tive fields as an optimal adaptation to natural image statistics given
a constraint on how many neurons may be active at a given time
(Olshausen & Field, 1996, 1997).

Although Barlow’s efficient coding hypothesis has been most
applicable to early perceptual areas, a related idea—the “bounded
rationality” hypothesis—has been productive in studying aspects
of higher-level cognition. This idea was first championed by
Herbert Simon (Simon, 1972), and views behavior as being
adapted to physical constraints of the agent. For example, an agent
may have limited time or energy resources to devote to a reasoning
problem which prevent it from reaching the correct conclusion.
Boundedly rational theories of cognition differ according to what
kinds of limits they assume (Griffiths, Lieder, & Goodman, 2015;
Lewis, Howes, & Singh, 2014). Our theory is most closely related
to the “resource rational” framework of Griffiths et al. (2015), who
propose that agents seek to optimize the “value” of a computation,
defined as the expected cumulative reward of performing a par-
ticular computation minus the cost of the computation.

How should researchers quantify the costs of computation? In
the resource-rational framework, capacity limits are typically
quantified in ways that are specific to the choice of algorithm. For
example, Vul, Goodman, Griffiths, and Tenenbaum (2014) de-
scribed costs in terms of how long it takes to draw a sample from
a Bayesian posterior distribution over a decision variable. If re-
sponding quickly leads to more trials and therefore more oppor-
tunities for reward, then there is an opportunity cost to drawing
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more samples on an individual trial, even if additional samples
provide greater certainty about the correct response. As another
example, Griffiths, Sanborn, Canini, Navarro, and Tenenbaum
(2011) model human category learning with several different ap-
proximate algorithms, including particle filters. In particle filter
algorithms, the computational cost corresponds to the number of
“particles” used in the approximation, with higher numbers being
more costly but more accurately approximating the distribution of
interest. The effective number of particles that humans have can
then be inferred from their errors.

Information theory offers a different approach to quantifying
computational costs, which is more abstract and not tied to any
particular algorithm. For example, Genewein, Leibfried, Grau-
Moya, and Braun (2015) take a similar approach to ours, modeling
an agent’s actions as outputs of a limited-capacity communication
channel whose inputs are world states. That is, the agent is repre-
sented by a capacity-limited stochastic function that maps world
states to actions. The agent’s capacity determines how its actions
can be tailored to particular world states. At low capacities, an
agent cannot distinguish between all world states, and therefore
cannot take the optimal action for each state. Instead, the agent
must abstract over multiple world states and treat those states as
effectively the same. In other words, it must categorize world
states. At high capacities, world states can be perfectly represented
and the optimal action taken for each state.

Consistent with Genewein et al. (2015), a central point of this
paper is that abstraction and categorization are key strategies for
compressing memoranda (see A Corollary to the Principles of
Efficient Data Compression: Categorical Bias and Abstraction
section). It is not a coincidence that various forms of abstract
stereotyped conceptual structures have been studied extensively in
the context of memory such as schemas and scripts (Bartlett &
Burt, 1933; Schank & Abelson, 1977). Psychologists and artificial
intelligence researchers have proposed that people encode events
relative to schemas in order to increase memory performance
(R. C. Anderson, 1984), and there is evidence that people misre-
member these episodes (such as stories they have read) in ways
that are influenced by schemas (e.g., Bartlett & Burt, 1933). These
nonveridical memories based on abstract schemas suggest that
long-term memory (LTM) is capacity-limited.

Is there similar evidence that short-term or working memory is
capacity-limited? The answer is yes, and a large body of literature
has focused on how to characterize its capacity limits especially in
the domain of visual working memory (VWM; see A. Baddeley,
2003; Brady, Konkle, & Alvarez, 2011; C. R. Sims, 2016; Cowan,
2008; Luck & Vogel, 2013; Ma, Husain, & Bays, 2014). Although
some researchers hypothesize that VWM is fundamentally limited
by the number of discrete “items” that can be maintained, oth-
ers—in the spirit of bounded rationality and efficient coding—
have assumed a more generic capacity limit (Alvarez, 2011; Bates
et al., 2019; Brady & Alvarez, 2015; Brady et al., 2009; Brady &
Tenenbaum, 2013; C. R. Sims, 2016; Mathy & Feldman, 2012;
Yoo et al., 2018). In particular, this body of work provides strong
evidence that VWM makes use of a wide array of “gist” represen-
tations or summary statistics, just as we saw in the context of early
visual perception, schemas, categorization, and decision-making.
An interesting possibility, which we explore below, is that the
abstract and categorical representations found in VWM, LTM, and

other cognitive subsystems are boundedly rational adaptations to
capacity limits in memory.

Another important consequence of limited capacity is that more
complex stimuli, which carry more sensory information, should be
more difficult to veridically remember. Supporting this prediction,
there is strong evidence from the VWM literature that the complexity
of to-be-remembered objects and the number of object features have
important impacts on how well objects are remembered (Alvarez &
Cavanagh, 2004; Brady & Alvarez, 2015; Fougnie, Asplund, &
Marois, 2010; Ma et al., 2014; Oberauer & Eichenberger, 2013;
Wheeler & Treisman, 2002; Xu & Chun, 2006).

Prior Knowledge Principle

The prior knowledge principle states that accurate knowledge of
stimulus statistics allows an agent to form efficient (i.e., compact)
representational codes given a limited capacity. To represent a
stimulus efficiently, a code must be designed using knowledge of
the statistics of the to-be-coded items. As a simple example,
consider Morse code, which is a method for encoding letters of the
alphabet into binary signals (“dots” and “dashes”). The designers
of this code realized that they could increase its efficiency (i.e.,
decrease average code length) using knowledge of letter frequen-
cies by assigning the shortest binary sequences to the most fre-
quently transmitted letters. An occasional message may be as-
signed a long code if it happens to have many infrequent letters
but, on average, messages can be assigned much shorter codes in
this way. Furthermore, the more “peaky” the frequency of letters
is, then the shorter the codes assigned to messages can be on
average. For example, if 90% of the English language consisted of
the letter “e,” then messages could be coded more compactly on
average than with real English in which e’s are not nearly so
frequent. Crucially, a peakier English language is also less infor-
mative, and therefore messages in this language are more com-
pressible. These basic principles used in Morse code are funda-
mental and are universally used in digital compression algorithms
such as Huffman or arithmetic coding.

There are at least four predictions suggested by the prior knowl-
edge principle. First, neural activity should be higher (less effi-
cient) for unnatural images than for natural images. Research on
efficient neural coding provides evidence for this prediction. In-
vestigators have found that neural codes in early visual areas are
specifically adapted to natural image statistics, and therefore neu-
ral representations are less efficient (more spikes per second) in the
presence of less natural images (Simoncelli & Olshausen, 2001).
Note the analogy to the Morse code example in which “unnatural”
(i.e., uncommon messages) are assigned longer codes.

Second, if codes are better adapted to natural image statistics,
then performance should be worse in perceptual and memory tasks
that use unnatural stimuli. The literatures on visual perception and
VWM performance provide strong support for this prediction. A
large number of studies in visual perception demonstrate perfor-
mance superiority when stimuli better match natural image statis-
tics (Bar, 2004; Boyce, Pollatsek, & Rayner, 1989; Davenport &
Potter, 2004; Fang, Kersten, Schrater, & Yuille, 2004; Girshick,
Landy, & Simoncelli, 2011; Greene, Botros, Beck, & Fei-Fei,
2015; Knill, Field, & Kersten, 1990; Lythgoe, 1991; Oliva, 2005;
Parraga, Troscianko, & Tolhurst, 2000; Schwarzkopf & Kourtzi,
2008; Spence, Wong, Rusan, & Rastegar, 2006; Stocker & Simo-
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ncelli, 2006; Weckström & Laughlin, 1995). Moreover, although it
is more popular to study VWM with simple artificial stimuli
(Orhan & Jacobs, 2014), there is evidence that people perform
better on memory tasks when stimuli consist of natural objects
(Brady, Konkle, Oliva, & Alvarez, 2009; Brady, Störmer, & Al-
varez, 2016; Melcher, 2001) or objects of expertise (Curby,
Glazek, & Gauthier, 2009), or when objects are arranged in an
expected manner (Kaiser, Stein, & Peelen, 2015).

Third, if people adapt their coding strategy through learning
stimulus statistics, performance should be worse on training sets
that are intrinsically less compressible. Experiments in VWM
provide evidence for this prediction. Broadly speaking, these ex-
periments have shown that performance limits can be predicted
based on how intrinsically difficult it is to efficiently compress the
stimulus set. For example, Bates et al. (2019) presented subjects in
different conditions with stimuli drawn from different stimulus
distributions (uniform or Gaussian). These subjects viewed images
of plant-like objects that varied by the width of their leaves. They
found that if leaf-widths were drawn from a Gaussian distribution,
the number of correct responses was higher compared to when
leaf-widths were drawn uniformly from the entire stimulus space.
This result is predicted if people represent stimuli using com-
pressed codes because uniform (flat) distributions are intrinsically
less compressible than Gaussian (more peaked) distributions (as in
the Morse code example above). Furthermore, these results indi-
cate that people adapt their memory codes over time as the statis-
tics of their environments change. By analogy to Morse code, it
would be as if people learn that the frequencies of each letter in
their language have shifted over time, and they modify their code
assignments accordingly.

The work just mentioned is consistent with other findings. For
example, Brady et al. (2009) trained subjects to memorize visual
displays containing several objects, where each object consisted of
two concentric, colored circles. Subjects were not told that the
experimenters introduced correlations between certain color pairs
such that some pairs were more likely to appear. Over several
blocks of trials, subjects steadily improved performance while the
correlations were present, but their performance dropped back to
baseline during a small subset of trials where the correlations were
removed. Thus, the improved performance must have been due to
statistical learning of the color co-occurrence statistics rather than
an increase in information capacity (but see Huang & Awh, 2018,
regarding mechanistic ways that recall may differ in the statistical
learning case).

C. R. Sims (2016) reviewed additional findings indicating that
the compressibility of training stimuli influences recall perfor-
mance. In “span of absolute judgment” tasks, people are trained to
map a stimulus dimension (e.g., the length of a line) to a finite set
of ordinal categories. For example, there may be 10 different lines
increasing in length from short to long, and subjects must decide
which ordinal category a line belongs to (Length 1, Length 2, etc.).
Researchers have found that as the number of categories to choose
from increases, performance declines, even when all stimuli are far
enough apart to be fully discriminable (Rouder, Morey, Cowan, &
Pealtz, 2004). This result is predicted by the requirements of
efficient data compression—if people are capacity-limited, perfor-
mance should decrease with category set-size because augmenting
the set of values that need to be transmitted makes compression
harder.

Finally, if both perception and memory obey the prior knowl-
edge principle, then there should be overlap in the biases that are
observed in these subsystems. Although it is not typical to directly
compare response biases in perception and memory, there is at
least some evidence that memory inherits biases from perception
(e.g., Montaser-Kouhsari & Carrasco, 2009). Indirect evidence
comes from the fact that there is a large degree of neural and
representational overlap between perception and memory. For
example, which stimulus a subject is retaining in working memory
can often be decoded from the responses of early visual cortex
(Christophel, Hebart, & Haynes, 2012; Emrich, Riggall, La-
Rocque, & Postle, 2013; Harrison & Tong, 2009; Kang, Hong,
Blake, & Woodman, 2011; Serences, Ester, Vogel, & Awh, 2009;
Wolff, Jochim, Akyürek, & Stokes, 2017), and the amount of
decodable information decreases with memory load (D’Esposito &
Postle, 2015; Emrich et al., 2013; Wolff et al., 2017). It has also
been found that memory maintenance impacts concurrent (Kon-
stantinou, Bahrami, Rees, & Lavie, 2012) as well as subsequent
perceptual processing (Saad & Silvanto, 2013a, 2013b) in ways
suggesting memory and perception share common neural sub-
strates. In addition, perceptual stimuli are found to interfere with
memory maintenance, but only when they are specifically targeted
to the values being maintained in memory (Pasternak & Greenlee,
2005).

Task-Dependency Principle

For a code to be optimal, it must take into account the behavioral
goals of an agent. The task-dependency principle states that codes
should allocate resources according to how an agent will use that
information. In particular, if it is costly to an agent to confuse
stimulus values x and y, then codes should be designed so that
these values are easily discriminated, even if this means a loss of
precision for other stimulus values. This principle has two entail-
ments: (a) stimulus dimensions that are task-irrelevant should be
allocated minimal resources, and (b) particular stimulus values
within a given dimension that are task-irrelevant should be allo-
cated minimal resources.

Experiments on VWM provide strong evidence in support of the
first entailment. For example, subjects in an experiment reported
by Bates et al. (2019) learned arbitrary category boundaries in
which one stimulus dimension (e.g., leaf width), but not another
dimension (leaf angle), was category-relevant. It was found that
their errors in a subsequent memory task increased along the
irrelevant dimension but decreased along the relevant dimension,
as would be expected if they were strategically reallocating re-
sources based on task demands. Yoo et al. (2018) reported a VWM
experiment in which subjects were precued on each trial as to how
likely it was that each dot in a multidot display would need to be
remembered. They showed that memory errors for location de-
creased monotonically with probability that a dot would be probed.
Fougnie, Cormiea, Kanabar, and Alvarez (2016) similarly manip-
ulated the information that subjects maintained in VWM in a
task-dependent manner. In one condition, people remembered the
colors of all items in a display and were asked to recall one of the
colors selected at random. In the other condition, subjects were
queried about all items’ colors but a response was only considered
correct if all recall judgments were on the correct half of the color
wheel. Results indicate that both guessing rates and precision fell
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in the latter condition, consistent with the prediction that subjects
spread their limited memory resources more evenly across the
items in a display. Swan, Collins, and Wyble (2016) used a
“surprise” trial in a VWM experiment to show that people allo-
cated more capacity to a task-relevant dimension. They blocked
trials, such that the first half of the experiment only queried about
one stimulus dimension (color), and the second block, which
began without warning, queried about a different dimension (ori-
entation). On the first trial of the second block (the “surprise”
trial), subjects had lower precision on orientation and higher pre-
cision on color compared to the remaining trials. The above
examples indicate that people can rationally allocate their capacity
to different stimulus dimensions of an image to improve task
performance.

The second entailment mentioned above states that to allocate
maximal resources to the most task-relevant information, it is
important to consider how confusable different stimulus values
along a single dimension are to prevent costly confusions. Accord-
ing to C. R. Sims (2018), evidence for this entailment is provided
by classic experiments on perceptual discrimination and general-
ization. In generalization experiments, people are required to dis-
criminate between pairs of stimuli. If two stimuli are more similar
to each other, they will be more likely to be confused, meaning that
a subject will be more likely to generalize from one to the other.
However, the task-dependency principle predicts that the proba-
bility of generalizing from stimulus x to stimulus y should reflect
how behaviorally costly it is to confuse them. Moreover, if people
can adapt their codes to changing demands (e.g., rewards from the
experimenter), their pattern of errors should be predicted by effi-
cient compression. An experiment by Kornbrot (1978) provides
such an example. On each trial, a subject heard a tone and had to
categorize the intensity of the tone as belonging to one of N ordinal
categories. Points were awarded for correct answers and subtracted
for incorrect answers, but overestimates were penalized more than
underestimates, making penalties asymmetric. In the analysis by
C. R. Sims (2018), subjects were found to have efficiently adapted
to this particular asymmetric cost function imposed by the exper-
imenter. Specifically, it was found that subjects made fewer over-
estimation errors but more underestimation errors compared to a
control condition with symmetric penalties, suggesting a strategic
tradeoff.

RDT

In the previous section, we presented several core principles of
efficient data compression, discussed their implications for per-
ception and perceptual memory, and reviewed experimental data
indicating that the principles provide accounts of a wide range of
perceptual and mnemonic phenomena. In this section, we present
a brief introduction to concepts in information theory and RDT,
which form the mathematical basis for those principles.

Information theory addresses the problem of how to send a
message over a noisy channel (e.g., a telephone wire) as quickly as
possible without losing too much information. How much infor-
mation can be sent per unit time (or per symbol) is the information
‘rate’ of a channel. RDT focuses on the case when the capacity (or
rate of transmission) is too low to send the signal perfectly for a
particular application (e.g., trying to hold a video conference with
a slow Internet connection).1 In this situation, one’s goal is to

design a channel that minimizes the average cost-weighted error
(or distortion) in transmission subject to the capacity limitation.
Crucially, the optimization depends on two factors: (a) the prior
distribution over inputs to the channel (“prior knowledge princi-
ple”), and (b) how the transmitted signal will be used after trans-
mission (“task-dependency principle”). The first factor is impor-
tant because inputs that are uncommon do not need to be
transmitted as accurately as inputs that are more common. The
second factor is important because, depending on the application,
some kinds of errors may be more costly than others.

Recall the example introduced toward the beginning of this
paper in which audio signals are coded using the MP3 file format.
This format is able to compress files to a fraction of their original
size by taking advantage of the two factors just mentioned. First,
audio waves are not usually completely random, and therefore
their regularities can be taken advantage of by replacing parts of
the original waveform with educated “guesses” based on context.
Second, people are unable to perceive extreme frequencies, so this
information can be discarded without perceptible differences. In
theory, these same engineering strategies for signal transmission
are also applicable to biological information processing including
human perception and memory.

Whereas much of the scientific literature uses number of re-
membered “items” as a measure of memory capacity, information
theory defines channel capacity as the mutual information between
the input distribution and the output distribution. That is, if you
know what comes out of a channel, how much information does
that give you about what was inserted into the channel? If mutual
information is high (high capacity), then the outputs tell you a lot
about the inputs, but if it is low (low capacity), then the channel
does not transmit as much information. The mutual information
I(x; y) for discrete random variables x and y is given by:

I(x; y) � �
x,y

p(x, y) log
p(x, y)

p(x) p(y) . (1)

In the case of memory, sensory stimuli (e.g., pixel arrays) can be
regarded as inputs to an information channel, and neural codes are
the channel’s outputs. Stimuli observed in the world follow some
distribution, and the neural memory codes follow a distribution
conditioned on the observed stimuli. The capacity of memory is
the mutual information between the stimulus and the neural code.
If the mutual information is high, then memory has high capacity
and neural decoding (i.e., predicting sensory stimuli from neural
activity) can be detailed and accurate. In contrast, if it is low, then
memory has low capacity and neural decoding cannot be as pre-
cise.

RDT seeks to find the conditional probability distribution of
channel outputs (neural codes, denoted x̂) given inputs (sensory
stimuli, denoted x) that minimizes an error or distortion function

1 Although we will use the terms interchangeably in this article, techni-
cally speaking, rate and capacity are not completely synonymous. Both
rate and capacity are measured in units of bits per item (or “symbol”). For
example, a biological memory system would be able to transmit an average
of x bits per image studied. But in RDT, capacity refers more specifically
to the maximum achievable rate for a given channel design, whereas rate
is the average information per symbol given the choice of a particular prior.
Thus, capacity is expressed as the supremum of rate over all possible prior
input distributions.
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d�x, x̂� without exceeding an upper limit C on mutual information.
Mathematically, this minimization is the following constrained
optimization problem:

Q* � arg min
p(x̂ | x)

�
x, x̂

p(x) p(x̂ | x) d(x, x̂),

subject to I(x; x̂) � C
(2)

where Q� is the optimal channel distribution.
As illustrated in Figure 1, codes that are optimized according to

RDT have several intuitive properties. For explanatory purposes,
this figure assumes a one-dimensional stimulus space in which the
distribution of stimulus values, often referred to as the prior or
input distribution and denoted p(x) (blue distribution in this fig-
ure), is either Gaussian or uniform. As illustrated in Figure 1a, as
capacity decreases, the optimal channel distribution p�x̂ � x� where
x � x0 (orange distribution) gets less precise or flatter (compare
the channel distribution when the capacity is three bits [left graph]
vs. when it is one bit [right graph]). Figure 1b illustrates that
p�x̂ � x� also becomes less precise when the entropy of the input
distribution p(x) increases.2 With a narrow input distribution (low
entropy; right graph), many stimulus values can be largely ignored
based on how infrequently they are encountered, meaning that the
channel can allocate more resources or bits to more frequent
values. But with a more dispersed input distribution (high entropy;

left graph), many more stimulus values are potentially important, and
thus the optimal channel must allocate bits more evenly across the
stimulus space. In addition, this panel demonstrates that the output of
the channel will be biased toward the mean of the input distribution,
with the bias increasing as this distribution’s entropy decreases (Fig-
ure 1b, left graph: large input distribution entropy; right graph: small
entropy). Intuitively, biasing toward the mean reduces average chan-
nel error because it ensures that more outputs will fall in regions of
higher input probability. Figure 1c shows that if a visual display has
multiple objects and capacity is allocated equally across them, then
channel precision will decrease with number of items. Finally, the
choice of distortion function can have a profound effect on the
channel distribution (not illustrated here).

A Corollary to the Principles of Efficient Data
Compression: Categorical Bias and Abstraction

The study of categorization has played a prominent role in the
field of psychology. Here, we explore an important link between
categorical representations and efficient data compression. As
noted briefly above in the context of the limited capacity principle,
optimal data compressions often produce abstract or categorical
representations. For instance, representations in VWM are often
biased toward category means and representations in LTM appear
to be more sensitive to categorical than perceptual features (see
below). This section demonstrates that these properties can arise
from efficient compression, making certain assumptions about
either the stimulus prior p(x) or the distortion function d.

Consider the case where the input distribution over stimulus
features has multiple modes. For example, stimuli may be drawn
from a mixture of Gaussian distributions, where each mixture
component can be interpreted as a category. In this scenario,
optimal compressions should appear more categorical as the avail-
able capacity decreases because a channel can reduce expected
error by producing outputs that are biased toward modes of the
input distribution (i.e., regions of the stimulus space from which
stimuli are very common). Roughly speaking, as the capacity of a
channel decreases, categorical bias increases. At very low capac-
ities, the best a channel can do is to output category prototypes
(i.e., mean values of mixture components).

This idea is illustrated in Figure 2 for a one-dimensional stim-
ulus space in which there are two categories of stimuli. In each
graph of this figure, the horizontal axis plots the stimulus space,
the vertical axis plots probability, the dotted vertical line is the
category boundary, and the solid vertical line plots the true stim-
ulus value (x � x0). The input distribution p(x) is colored blue and
the channel or output distribution p�x̂ � x� is colored orange. The
top and bottom rows show results for low and high capacity
channels, respectively, assuming a square-error loss function.
When the channel has low capacity, the output distribution is
always centered near the category prototype (i.e., the mean of the
component Gaussian distribution) that is closest to stimulus x0.

2 Entropy is a measure of how predictable a random variable is, and
therefore how much information it carries. On one extreme, if a variable is
uniformly random over some domain, it is hard to predict and therefore one
gains a lot of information by observing its value. On the other extreme, if
a variable is a delta function (i.e., it always takes on the same value), then
no information is gained by observing its value.

Figure 1. Predictions of rate-distortion theory for unidimensional sources.
See text for details. SD � standard deviation of the response error. From
“Adaptive Allocation of Human Visual Working Memory Capacity During
Statistical and Categorical Learning,” by C. J. Bates, R. A. Lerch, C. R.
Sims, and Robert A. Jacobs, 2019, Journal of Vision, 19(2), p. 11. Adapted
with permission. See the online article for the color version of this figure.
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That is, the channel shows a large categorical bias. In contrast,
when the channel has high capacity, the output distribution is
centered near stimulus x0. It transmits much more fine-scale per-
ceptual detail about the stimulus in this case.

Alternatively, categorical bias can arise through the distortion
function d. Consider a channel with a categorical distortion func-
tion and a uniform input distribution. According to the distortion
function, there is high cost to misremembering a stimulus that
belongs to category A as one that belongs to category B, but low
cost to misremembering a stimulus as another member of the same
category. For example, consider plants that can be grouped as
edible or poisonous. Misremembering a poisonous plant as an
edible plant has a high cost, whereas misremembering an edible

plant as a different edible plant has low cost. As illustrated in
Figure 3, this scenario, like the scenario above in which the input
distribution was a mixture distribution, will also yield categorical
bias at low capacity. In the top row of this figure, there is a
sharp jump in outputs when the true stimulus value crosses the
category boundary. This categorical bias arises because it min-
imizes the possibility of making a costly miscategorization at
low capacity.

Rate-Distortion and Bayesian Approaches

RDT provides a framework for finding optimal codes or repre-
sentations, and thus it can be used to model aspects of optimal

Figure 2. Illustration of how categorical bias can be explained via the input distribution p(x). See text
for details. The means of the two mixture components of the input distribution were 0 and 100 (coinciding
with the axis extremes). Distortion is square-error. See the online article for the color version of this figure.

Figure 3. Illustration of how categorical bias can be explained via the distortion function d. See text for details.
The distortion function was a weighted sum between a pure categorical loss and a square-error loss with weights
of 1 and 0.001, respectively. See the online article for the color version of this figure.
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information processing. In the field of psychology, however, it is
more common for researchers to model optimal information pro-
cessing using a Bayesian approach. What is the relationship be-
tween RDT and Bayesian approaches?

RDT and Bayesian approaches often make similar predictions.
This is expected because RDT makes extensive use of Bayesian
statistics. However, these predictions are not always identical.
Differences in their predictions stem from the fact that Bayesian
approaches do not make assumptions about capacity limits,
whereas RDT assumes that the processes under study are capacity-
limited. For Bayesian approaches, performance is limited solely by
“noise.” In different contexts, this noise is referred to as sensory
noise, perceptual noise, memory noise, decision-making noise, or
motor noise. For RDT, in contrast, performance is limited by both
noise and limits on capacity.

For example, consider a VWM experiment in which subjects
must remember and later recall the visual features of objects in
displays. When relatively few objects appear in displays, recall
performance is often good, but it degrades rapidly when displays
contain more objects, a phenomenon known as the “set size”
effect. Researchers have modeled set-size effects using Bayes-
ian approaches by assuming that the variance of perceptual
noise increases as the number of objects in displays increases
(e.g., van de Berg, Awh, & Ma, 2014). Unfortunately, although
this assumption is needed to account for the empirical data, it is
lacking an independent theoretical justification. In contrast,
set-size effects can be modeled using an RDT approach by
assuming that the variance of perceptual noise and the capacity
of VWM are fixed constants (see Figure 1, Panel c). Intuitively,
RDT accounts for set-size effects because VWM’s limited
capacity is “spread thinner” across objects when displays con-
tain more objects.

As a second example, consider how optimal memory perfor-
mance should change with changes in the stimulus or input distri-
bution p(x). As discussed in Bates et al. (2019), RDT predicts that
performance should steadily decline with increases in the standard
deviation of this distribution, whereas a conventional Bayesian
approach predicts that this performance will degrade slowly. At an
intuitive level, these differences in predictions are expected. RDT
assumes that an optimal system allocates its limited capacity to
cover the entire stimulus range, and thus this capacity is “spread
thinner” across the stimulus space as the size of the range in-
creases. In contrast, a conventional Bayesian approach assumes
that an optimal system does not have a capacity limit, and thus
optimal memory performance can be robust to increases in the size
of the stimulus range. As reported in Bates et al. (2019), experi-
mental data are qualitatively consistent with the predictions of
RDT.

Computer Simulations: Preliminaries

Exact methods exist to find optimal channels based on RDT
(Blahut, 1972), and past work has used these methods to develop
RDT accounts of perception and memory (Bates et al., 2019; C. R.
Sims et al., 2012; C. R. Sims, 2016, 2018; Lerch, Cui, Patwardhan,
Visell, & Sims, 2016). Above, we used these methods to find
optimal channels exhibiting different degrees of categorical bias.

Unfortunately, exact methods are computationally feasible only
with low-dimensional stimulus spaces, and thus cannot be used in

more realistic situations. Researchers have therefore considered
approximate methods such as the use of deep neural networks to
approximately implement RDT in high-dimensional spaces. To
date, however, these implementations have been limited to tasks in
which the sole goal is data compression with respect to reconstruc-
tion error (e.g., Ballé et al., 2016; see also Alemi et al., 2018; Han,
Lombardo, Schroers, & Mandt, 2018; Santurkar, Budden, & Sha-
vit, 2018). An innovation of the research presented here is that we
introduce a new deep neural network architecture that approxi-
mately implements RDT. Our architecture discovers good data
compressions even when data will be used for regression, classi-
fication, recognition, or other tasks. An important property of our
model is that it is trained end-to-end, operating on raw perceptual
input (e.g., pixel values) rather than intermediate levels of abstrac-
tion (e.g., orientation, color, texture, or shape), as is the case with
most psychological models. In this way, our framework represents
an early step toward scaling up models of perception and percep-
tual memory toward levels of complexity faced in real-world
situations.

There are three key motivations for generalizing RDT models of
biological systems to high-dimensional spaces. First, if biological
systems have discovered sophisticated schemes to compress high-
dimensional data, it should be productive for psychologists to
create models that solve the same problem. Biological and model
solutions can be compared, and the latter evaluated in terms of
their predictive power. Second, models that take as input raw
perceptual data (e.g., pixel values) are more general than models
that assume a stimulus-specific, intermediate set of features. Many
models in the psychology literature assume that images are (mag-
ically) parsed into objects, and that objects are (magically) en-
coded as finite sets of simple features (e.g., orientation, color, etc.).
However, most natural images cannot be unambiguously parsed in
these ways (Orhan & Jacobs, 2014). As an extreme example, if
subjects view images with no semantic content (e.g., white noise),
it is not clear which features they should use to encode the image
information. After all, these images contain no objects, parts,
surfaces, contours, and so forth. However, a model that takes raw
pixel values directly as input can still make predictions about
behavioral performance in this case. Third, compressing raw per-
ceptual data results in a representational code, which can be
compared to neural codes. Thus, aspects of neural activity can in
principle be predicted using the representational spaces that result
from efficient compression of raw inputs.

Furthermore, although many engineering algorithms already
exist for compressing digital images, video, and audio, these
methods are not suitable as cognitive models for several reasons.
First, such algorithms do not typically include ways to vary either
the loss function or the capacity arbitrarily—manipulations that are
key for the purposes of modeling human behavior. Second, they
are not designed to adapt over time to new input distributions,
contrary to the adaptive nature of biological systems (Bates et al.,
2019). Finally, popular compression algorithms do not include a
hierarchy of abstractions, from highly perceptual to highly cate-
gorical, as seen in perception and memory.

Rate-Distortion Autoencoders

A key component of our models is the “autoencoder.” In gen-
eral, autoencoders are parameterized models (e.g., neural net-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

8 BATES AND JACOBS



works) that are trained in an unsupervised manner to map input
data items to (approximate) copies or reconstructions of these
items subject to an “information bottleneck.” Our simulations used
a specific variant of autoencoders known as variational autoencod-
ers (VAEs; Kingma & Welling, 2013; Rezende, Mohamed, &
Wierstra, 2014).

A VAE consists of three parts or stages. The goal of the first two
stages, referred to as the encoder and the sampler, is to map each
data item to a probability distribution over hidden or latent vari-
ables. As explained below, a latent representation is not a fixed
value such as a fixed vector of neural network activation values.
Instead, a latent representation is a probability distribution over
vectors of activation values. For instance, if xi denotes the ith data
item and zi denotes its corresponding latent variable, then the goal
of the first two stages is to estimate the distribution p(zi | xi) and to
sample zi from this distribution.

Assume, for example, that latent variable zi is a vector with J
components (i.e., zi � �zi1, . . . , ziJ�T) where each individual com-
ponent, labeled zij, has a Gaussian distribution with mean �ij and
variance �ij

2. Then p(zi | xi) is a Gaussian distribution defined by 2J
parameters (denoted ��ij, �ij

2�j�1
J ; there is one mean and one vari-

ance for each component of zi).
The first stage of a VAE is an encoder that maps each data item

xi to a set of latent mean and variance parameters. This encoder is
typically implemented as a conventional neural network. For in-
stance, it may have one or more layers of hidden units, where each
hidden unit first computes a weighted sum of its inputs and then
computes its activation value using a nonlinear activation function.
An encoder has 2J output units whose activation values correspond
to the values of the latent mean ��ij�j�1

J and variance ��ij
2�j�1

J

parameters.
The output of the encoder is the input to the second stage of a

VAE, the sampler. The sampler takes the mean and variance
parameter values produced by the encoder and samples from a
Gaussian distribution defined by these values to produce a value
for latent variable zi (i.e., zij � N(�ij, �ij

2)). In some applications,
it may be desirable to sample multiple times in order to obtain a
histogram estimating the latent distribution p(zi | xi).

Ideally, one would infer the exact latent distribution
p�zi � xi� � p�xi � zi�p�zi� ⁄ p�xi�. However, this inference problem
is computationally intractable in general. In practice, encoders
of VAEs are therefore trained to infer a particular approximate
distribution, denoted q�(zi | xi) (where � denotes encoder net-
work weights), known as a variational distribution. This train-
ing attempts to find values of � that make q�(zi | xi) as close as
possible to the true posterior p(zi | xi). Through our choice of the
approximating distribution q, we can introduce an “information
bottleneck” into the encoder, such that latent representations
fail to represent at least some aspects of input data items. This
loss of information is a desirable outcome, because the latent
variables are then forced to find meaningful abstractions in the
data. Below, we will see there is a precise way of controlling the
amount of information lost by introducing a scalar parameter
(denoted �) inside the training objective.

The final stage of a VAE is a decoder. Like the encoder, the
decoder is typically implemented as a conventional neural net-
work. Its input is a sample zi produced by the sampler, and its
output is an (approximate) reconstruction of data item xi based on
the sample. Because latent variables have probability distributions,

reconstructions also have distributions. If the sampler produces
multiple samples of latent variable zi, then the decoder can decode
each sample, thereby producing multiple data item reconstructions.
That is, samplers and decoders can be used to obtain a histogram
estimating distribution p�(xi | zi) (where � denotes decoder network
weights). Reconstructions tend to be imperfect due to the loss of
information in the latent variable (and because zi is a noisy sample
from approximate distribution q�(zi | xi)).

Intuitively, VAEs are closely related to RDT (these intuitions
can be made mathematically precise; see Alemi et al., 2017, 2018;
Ballé et al., 2016; Burgess et al., 2018). Channels in RDT corre-
spond to VAEs. Messages or signals (e.g., sensory stimuli) in RDT
correspond to input data items in VAEs. Codes (e.g., memories) in
RDT correspond to latent representations in VAEs, and capacity
limits in RDT correspond to constraints on latent representations.
Distortion functions (penalizing differences between input signals
and their reconstructions) in RDT correspond to (at least one term
in) objective functions in VAEs.

During training, VAEs adjust their weight values to minimize
the following loss or objective function:

L(�, �; x, z) � 	Eq�(z | x)[log p�(x | z)] 
 � DKL(q�(z | x) � p(z)).

A mathematical derivation and explanation of this equation can
be found in Kingma and Welling (2013). Intuitively, the equation
can be understood as follows.

The right side of the equation has two terms. The first term is the
(negative of the) expected log probability of input x given latent
variable z. It is often referred to as the “reconstruction error”
because, in practice, it often ends up being some measure of error
between the input and its approximate reconstruction. In VAEs, it
plays a role analogous to the distortion function in RDT. If, for
example, each input feature is assumed to have a Gaussian distri-
bution given a value for z, then log p�(x | z) is proportional to the
sum of square-error between the true input feature values and their
estimated or reconstructed values.

The second term is the Kullback-Leibler divergence (a measure
of the difference between two probability distributions) between
the posterior distribution of latent representation z (after observing
x), denoted q�(z | x), and its prior distribution, denoted p(z) (cho-
sen by the experimenter; in our simulations we set p(zij) to be a
Gaussian distribution with a mean of zero and variance of one).
This term acts as a regularizer that constrains the latent represen-
tation acquired during training by biasing the posterior distribution
of this representation toward its prior distribution. In VAEs, this
term plays a role analogous to the capacity constraint in RDT
because it limits or constrains the latent representations (or codes)
acquired by a VAE.

For VAEs, the coefficient � in the objective function is set to
one. �-VAEs are a variant of VAEs in which � can be set to any
nonnegative value (Higgins et al., 2017). Both VAEs and �-VAEs
have previously been characterized using RDT. As mentioned
above, this is accomplished by treating the first term of the
objective function as a measure of distortion and the second term
as related to capacity (e.g., Alemi et al., 2017, 2018; Ballé et al.,
2016; Burgess et al., 2018). The capacity of �-VAEs can be
indirectly influenced through the choice of �. When � is set to a
small value, �-VAEs are relatively unconstrained by the regular-
izer and capacity tends to be large. In this case, �-VAEs acquire
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latent representations that codify the fine details of data items.
In contrast, when � is large, �-VAEs are more constrained by
the regularizer and capacity tends to be small. These �-VAEs
acquire latent representations that are relatively constrained,
compressed, or abstract. After a �-VAE is trained, it is useful to
quantify its actual capacity (using, e.g., the formula in Alemi et
al. (2018)).

Extended Model Architecture

Some of the simulations discussed below use an extended model
architecture containing two modules: a �-VAE and a decision
network (see Figure 4). As described above, the �-VAE assigns a
value to latent variable zi based on stimulus xi which can be
regarded as a memory code. The decision network takes as input
this memory code and, optionally, a task-related probe image. It
outputs a decision variable. In a change-detection task, for exam-
ple, the input to the �-VAE is a target image, the input to the
decision network is the �-VAE’s latent code of the target image
and a probe image, and the decision network’s output is the
probability that the target and probe images depict different ob-
jects.

A critical aspect of the extended architecture is the link between
the two modules. Because the �-VAE’s memory code is an input
to the decision network, error information flows during training
through the decision network into the �-VAE (via the backpropa-
gation process used to train neural networks; Rumelhart, Hinton, &
Williams, 1986). This allows task-based decision errors to influ-
ence the acquisition of �-VAE memory codes. The objective
function minimized by the extended model during training has
three terms which can be weighted differently to achieve different
trade-offs, corresponding to (a) the distortion of the �-VAE’s

image reconstruction, (b) the information capacity of the �-VAE’s
memory code, and (c) the decision error. See the Appendix for
additional implementation details about the model used for each
task.

As discussed above, the information that gets stored or trans-
mitted in RDT models of behavior can vary widely depending on
an organism’s prior knowledge and goals. Accordingly, research-
ers can manipulate during training what kind of information is
encoded in memory in several ways. For example, a researcher
may seek a model that learns a memory code that “cares” a lot
about making accurate decisions but is less concerned about re-
membering all image pixels accurately. Technically, this can be
achieved by weighting the distortion of the �-VAE’s reconstruc-
tion in a model’s objective function by an especially small value.
Another way to manipulate the contents of memory is to vary the
decision task. For example, consider a case where a model is
trained only to minimize decision loss. If the error for the decision
network depends solely on stimulus dimension one, and is inde-
pendent of dimension two, then the �-VAE will learn a memory
code that contains information about the first stimulus dimension
only. Finally, memory contents should change as the prior distri-
bution over stimulus inputs changes. For example, if some stimuli
appear more frequently during training, then the acquired memory
code will tend to store more information about these stimuli at the
expense of others.

Data Sets

The simulations reported below used three sets of stimuli:
artificial potted plants, multiplant images, and natural images of
fruits.

Artificial potted plants. This data set consisted of the same
stimuli used in Bates et al. (2019). The set consists of images of an
artificial plant-like object (rendered via Blender, a 3D graphics
program), which we varied along two dimensions: leaf width and
leaf angle (see Figure 5). Images were converted to gray scale, and
down-sampled and cropped to a size of 120 	 120 pixels. The
stimulus space was discretized to 100 values along each dimension
for a total of 10,000 unique stimuli.

Plants set-size stimuli. For the set-size task discussed below,
we created a data set where each image had between one and six
potted plant objects taken from the artificial potted plants data set
(see Figure 8 for examples). All images were gray-scale and 300 	
300 pixels. For experiments below, we kept leaf width fixed and
varied leaf angle.

Natural images of fruits. For our simulations with natural
images, we used the Fruits-360 database (Mureşan & Oltean,
2018) which is comprised of photographs of individual fruits on a
white background. We chose a subset of the image classes to train
on, specifically apples, tomatoes, and bananas. We augmented the
data set by randomly zooming and cropping images, as well as
randomly flipping images.

Computer Simulations: Results

In this section, we present the results of a set of computer
simulations demonstrating qualitative agreement between our neu-
ral network models, optimal data compression as defined by RDT,
and people’s behaviors on perceptual and memory tasks. To test

targetgget
hiddenden

memory

reconstruction

probe

Decision

decision layer

reconstru
hidden

Memory 
module

Decision 
module

encoder decoder

Figure 4. Schematic of the extended model architecture. Dark gray boxes
represent a vector of pixel values, while other boxes represent layers (or a
set of layers) in a network. The layer representing the memory code is in
red. See the online article for the color version of this figure.
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ideas about the role of efficient data compression in perception and
memory, it is not sufficient to use simple models that make strong,
a priori assumptions about the stimulus dimensions that people
represent. Rather, we need to build models that match the level of
algorithmic sophistication of people who, for example, perceive
and remember aspects of their visual environments starting from
photoreceptor activities (akin to pixel values).

Fundamental Phenomena of Efficient Data
Compression

This subsection focuses on the fundamental phenomena of ef-
ficient data compression that were described above. The simula-
tions reported here are presented in an order roughly following the
panels of Figure 1.

Varying capacity. As will be discussed below (see the Effi-
cient Compression Over Time and Reasons for Multiple Memory
Systems section), experimental evidence indicates that the average
information content of perceptual traces is large and thus these
traces can represent the fine details of sensory stimuli, whereas the
information content of mnemonic traces is smaller meaning that
these traces tend to represent coarse-scale abstractions of stimuli.
To demonstrate that our models are consistent with this property,
we trained �-VAEs on the artificial potted plants data set at
different capacities. The top, middle, and bottom rows of Figure 6
show the results for networks with low, medium, and high capac-
ities, respectively. The leftmost image in each row is an instance of
a data item, and the remaining images in a row are samples of a

�-VAE’s reconstructions. Networks with low capacity tended to
produce blurry, averaged reconstructions. In fact, the reconstruc-
tions of the network with the lowest (near zero) capacity were
nearly identical to the average image over the entire data set. This
result was expected because the average of the data set is the value
that minimizes the expected reconstruction error. In contrast, net-
works with high capacity tended to produce crisp, accurate recon-
structions. The reconstructions of the network with the highest
capacity were nearly veridical copies of each data item.

Varying the stimulus distribution. If people are efficient but
capacity-limited, their performance in memory tasks should de-
pend on the prior or stimulus distribution (see the discussion of the
prior knowledge principle). In the simple case of a Gaussian versus
a uniform distribution over stimuli, RDT predicts that (a) perfor-
mance should be worse for the uniform distribution (since all
stimuli are equally important and thus capacity will be spread more
thinly across the stimulus space), (b) memory representations
should be systematically biased toward the mean of a nonuniform
stimulus distribution, with bias increasing for stimuli farther from
the mean, and (c) memory representations should become less
precise and more biased toward the mean as capacity decreases.
Together, Bates et al. (2019; discussed above) and Huttenlocher,
Hedges, and Vevea (2000) provided empirical support for these
predictions.

As above, we trained �-VAEs on the plants data set at different
capacities. In the uniform condition, training data items were
drawn from a uniform distribution across both leaf-width and
leaf-angle stimulus dimensions. In the Gaussian condition, items
were drawn from a uniform distribution over leaf angle and a
Gaussian distribution (M � 50, SD � 10) over leaf width. Because
leaf width is the dimension on which the two conditions use
different distributions, it is the “relevant” dimension for comparing
performances across the two conditions.

Because the model’s memory does not explicitly encode leaf
width or leaf angle, we use an indirect measure to assess what the
model has stored about these dimensions and evaluate our predic-
tion that its representations should be systematically biased. Spe-
cifically, we use the decoder of the �-VAE to produce reconstruc-
tions from the memories, and then compare these reconstructed
images to other images in the data set using pixel-by-pixel corre-
lations as a distance metric. When a reconstructed image is very
accurate, it should be highly correlated with the image it was
reconstructing, and it should be less highly correlated with other
images in the data set. On the other hand, if memory codes are
biased toward the mean, the reconstructed image may be most
similar to, and thus most highly correlated with, a different image,
one which is closer to the mean of the prior. For instance, if the
model observes a plant with leaf-width equal to 30, and the prior
is Gaussian with mean 50, the image reconstructed from memory
may be most similar to, say, images of plants with leaf-width 35,
which are closer to the mean of the prior.

Results of this analysis are shown in Figure 7. In each graph of
this figure, the horizontal axis plots the value along the leaf-width
dimension (i.e., the relevant dimension). Each vertical colored
dashed line demarcates a value of leaf width that was observed by
the model. The solid curve of matching color represents the cor-
relation values between the resulting reconstructions and other
plant images in the data set. For example, consider the purple lines.
To produce the purple curve in each panel, we first input plant

Figure 5. Two-dimensional stimulus space of artificial potted plants.
Leaf width varies along the horizontal axis, while leaf angle varies along
the vertical axis. From “Adaptive Allocation of Human Visual Working
Memory Capacity During Statistical and Categorical Learning,” by C. J.
Bates, R. A. Lerch, C. R. Sims, and Robert A. Jacobs, 2019, Journal of
Vision, 19(2), p. 11. Adapted with permission. See the online article for the
color version of this figure.
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images of leaf-width 40 (and each of the possible leaf angles) to
the �-VAE. Then, we produced reconstructions for each of those
images. Next, we compared each reconstructed image to all 10,000
images in the data set to get 10,000 correlation values. Finally, we
marginalized (averaged) over leaf-angle (i.e., the irrelevant dimen-
sion), resulting in a single, averaged correlation value for each
value of leaf-width that the reconstruction was compared to.3

The procedure just described was carried out with four different
models, corresponding to the four panels of Figure 7. The graphs
in the top and bottom rows correspond to �-VAEs trained on
Gaussian and uniform prior distributions, respectively, and the
graphs in the left and right columns correspond to �-VAEs with
high- and low-capacity, respectively.

As expected, �-VAE image reconstructions exhibited signifi-
cant bias toward the overall leaf-width mean (leaf-width M � 50)
in the Gaussian condition, especially when using low-capacity
networks. In contrast, no bias was evident in the uniform condition
with networks of either low or high capacity. Moreover, recon-
structions were more biased for leaf-width values farther from the
leaf-width mean in the Gaussian condition. We also examined the
reconstruction errors and found errors to be higher in the uniform
condition than in the Gaussian condition with both low- and
high-capacity networks (when equated for measured capacity), as
predicted by RDT. Finally, the relatively flatter curves in the
right-most panels indicate that reconstructions were less precise
with low-capacity networks.

Set-size effects. Set-size effects—decreases in memory per-
formance with increases in the number of to-be-remembered

items—have been reported in numerous VWM experiments and
are predicted by RDT (see Figure 1c). To test if our models can
account for these effects, we created a data set consisting of images
with varying numbers of plants (see leftmost column of Figure 8).
For this set of simulations, we used three versions of the extended
model architecture described above, where versions differed in the
capacities of their �-VAEs ranging from low to high (� values of
0.1, 0.01, and 0.003). Each model was trained separately on each
set-size, which varied from one to six. The decision network of
each model was trained to predict the leaf angle (as above), which
varied from 0 to 99. To measure precision, we calculated the mean
squared error between the prediction and true value.

Examples of models’ performances are shown in Figure 8. The
leftmost column shows displays with set sizes of two and six. The
remaining columns show sample image reconstructions. To pro-
duce the top row, we trained a model on images belonging to
set-size 2 with � � 0.003. To produce the bottom row, we trained
a model on images belonging to set-size 6 with � � 0.01. The
capacities of the two networks were measured to be approximately
equal. As expected, reconstructions of set-size 2 are crisp and
accurate because all the capacity can be allocated to just two
objects, whereas reconstructions of the large set-size are blurrier
and less accurate because the same capacity is “spread” thinly
across multiple plants.

3 Since reconstructions from the �-VAE are noisy samples, we repeated
the analysis multiple times and averaged the results.

Figure 6. �-VAE reconstructions at three different capacities: � � 10 (top row; network capacity � 0.01 nats),
� � 1 (middle row; network capacity � 2.6 nats), and � � 0.1 (bottom row; network capacity � 31.6 nats).
Networks were trained using a uniform prior or stimulus distribution over both leaf-width and leaf-angle
stimulus dimensions.
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The key results are shown in Figure 9 which shows estimated
“rate-distortion” curves for each set-size.4 The horizontal axis
plots calculated rates or capacities for the �-VAE portions of
models. The three points defining each curve correspond to the
three versions of the �-VAEs ranging from low to high capacity.
The vertical axis plots distortion or mean squared error in re-
sponses. Colors of curves indicate the set-size condition.

Consistent with set-size effects, mean squared error increased
monotonically as a function of set-size. This is evidenced by the
fact that curves shift upward with set-size, implying that response
precision decreases with set-size for a fixed rate (as in Figure 1c).
Critically, the decrease in precision naturally emerges from the
introduction of capacity limits, and requires no additional assump-
tions. When there is less capacity available, a model is forced to
“spread” its resources across the to-be-remembered plants in a
display to minimize overall error.

Varying the objective function. RDT predicts that the con-
tents of memory vary based on the nature of a task (task-
dependency principle). Here, we demonstrate that our model
shares this property. We trained an extended model architecture to

detect changes between a target image and a randomly drawn
probe image in two conditions. In one condition, the model was
penalized solely for errors in leaf width, and in the other condition
it was penalized solely for errors in leaf angle. For example, if the
target image had leaf-width � 50 and leaf-angle � 50, but the
probe had leaf-width � 60 and leaf-angle � 50, then the model
would be penalized in the former condition, but not the latter.5

As expected, latent representations of models’ �-VAEs con-
tained little information about the unpenalized stimulus dimension
in each condition. This result is illustrated in Figure 10. The left
and right columns show results for the leaf width-relevant and leaf
angle-relevant conditions, respectively. Within a column, the left
image of a pair is the target image and the right image is a
�-VAE’s reconstruction. One can see that the image reconstruc-

4 Rate-distortion curves are commonplace in the engineering literature.
5 In these simulations, objective functions were set so that reconstruction

error was ignored and so that decision error depended only on leaf width
(first condition) or leaf angle (second condition).

Figure 7. Effect of the prior or stimulus distribution on �-VAE reconstructions. See text for details. See the
online article for the color version of this figure.
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tions most closely match the target images along the leaf-width
dimension in the left column, and most closely match the target
images along the leaf-angle dimension in the right column.

Modeling Categorical Bias in High-Dimensional Spaces

In this subsection, we demonstrate that the categorical bias
found with exact RDT methods in low-dimensional stimulus
spaces can also be found with our models in high-dimensional
spaces. The two sets of simulations discussed here used the arti-
ficial potted plants and the natural images of fruits data sets,
respectively.

Artificial potted plants. Extended model architectures were
trained in two conditions. In the categorical condition, images
were sampled from a uniform distribution across the stimulus
space (both leaf width and angle). A model was trained using

an objective function that combined categorical and pixel-
reconstruction errors. In regard to the categorical error, the deci-
sion network of a model was trained to detect a change between
target and probe plants, but errors were only nonzero when the
network responded “same” but the target and probe belonged to
different categories or when the network responded “different” but
the target and probe belonged to the same category. We set the
category boundary along a single dimension—leaf width—at the
value of 50. If the reconstruction error was always set exactly to
zero and the �-VAE portion of a model was trained only with
respect to the categorical error, then the model would be incapable
of learning perfect reconstructions. Therefore, we set the weight on
the reconstruction error term to a small positive value so that the
categorical error would dominate for low-capacity models, but
high capacity models could still learn excellent reconstructions.

In the modal condition, a model was trained only with respect to
reconstruction error, but we manipulated the prior or stimulus
distribution such that there were two modes corresponding to
separate categories. Stimuli were restricted to vary along a single
dimension, leaf width, keeping the other dimension fixed. The
stimulus distribution was a mixture of two 1-D Gaussian distribu-
tions with means set to 0 and 100 and with standard deviations set
to 15.

In both categorical and modal conditions, we predicted that the
latent representations of low-capacity models would store little
more than the category of target images. As illustrated in Figure
11, the results confirmed this prediction. In this figure, the leaf-
width of a target plant increases from left to right. Critically, image
reconstructions are similar when leaf widths are to the left of the
category boundary, resembling one of the category prototypes, or
to the right of the category boundary, resembling the other cate-
gory prototype. However, they change dramatically at the category
boundary.

We also verified that the extent of this categorical bias increased
gradually as the capacity of a model decreased. This is illustrated
in Figure 12. The graphs in this figure were plotted using the same
method as those in Figure 7. For example, the red solid line plots

Figure 8. Sample reconstructions for plants set-size data set. The top row is an example of set-size 2, whereas
the bottom row is set-size 6. Each row shows the results from a separately trained �-VAE, but the two networks
had approximately the same capacity. As a result, reconstructions are less accurate with the larger set size.

Figure 9. Estimated rate-distortion curves for each stimulus set-size.
Error is based on Euclidean distance between actual and predicted leaf
angles. See the online article for the color version of this figure.
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the correlation curve when a target plant had a leaf width of 35 and
comparison plants had leaf widths indicated by the horizontal axis.
The left, middle, and right graphs are for high-, medium- and
low-capacity models, respectively. Clearly, target reconstructions

of high-capacity models are most similar to true target leaf-width
values, but as capacity decreases, correlation curves corresponding
to all target values within a category collapse onto each other. In
other words, for low-capacity models, there are essentially two

Figure 10. Image reconstructions of target images when models were penalized for error in leaf-width (left
column) or for error in leaf-angle (right column).
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possible reconstructions corresponding to the two category proto-
types.

Natural images. In this experiment, we only examine cate-
gorical bias driven by the loss function, since we are unable to
precisely manipulate the modality of the prior distribution for a
compilation of natural images, like we did with the artificial
images. Accordingly, we weighted the decision loss heavily com-
pared to the reconstruction loss in order to ensure that the target
object category was accurately remembered as opposed to remem-
bering each pixel value equally well.

To measure categorical bias on the natural images data set, we
examined image reconstructions (see Figure 13) and performed
principal components analysis (PCA) on the memory representa-
tions (see Figure 14). We can infer from the reconstructions that
the memories became less diagnostic as to, for example, which
variety of apple was seen or what angle it was seen from. At low
capacity, the reconstructions are clearly categorical: each type of
fruit corresponds to a unique output, which is the average of all
images in that category. At medium capacity, different varieties
within each species of fruit can begin to be distinguished. The PCA
analysis demonstrates that at low capacity, all memory vectors
within a particular class were highly similar to each other, and
clearly distinct from all other classes; whereas at high capacity,
memories from the same class were more distinct from each other
and had more overlap with other classes.6

Interim Summary

To this point in the article, we have argued that efficient data
compression shapes biological perception and perceptual memory
in many of the same ways that it shapes engineered systems. We
have stated three principles—the capacity-limited, prior knowl-
edge, and task dependency principles—that follow directly from
RDT, a primary tool that engineers use to design and analyze
capacity-limited machines, and shown how these principles pro-
vide accounts for many important behavioral phenomena and
experimental results. We also presented an extended deep neural

network architecture that approximately implements RDT in high-
dimensional spaces. Importantly, the architecture is trained end-
to-end, operating on raw perceptual input as opposed to features
selected by an investigator. We demonstrated that the architecture
accounts for several errors and biases in human perception and
perceptual memory, including categorical biases.

We believe that this work establishes a firm foundation for the
hypothesis that principles of efficient data compression can serve
as unifying principles accounting for many aspects of perception
and perceptual memory. In the remainder of this article, we at-
tempt to expand this foundation in new directions by offering
conjectures or speculations about how efficient compression may
play a role in other areas. The next section examines efficient
compression over time. An important aspect of this work is that it
motivates the need for multiple memory systems operating at
multiple time scales. The following section applies efficient com-
pression to the study of perceptual attention. Here, it is argued that
efficient compression can account for several attentional phenom-
ena including “pop out” effects.

Efficient Compression Over Time and Reasons for
Multiple Memory Systems

In sections above, we demonstrated cases in which categorical
bias increases as compression increases. For instance, in the case
of an autoencoder trained with photographs of fruits, we assumed

6 Although the principle-component space appears to scale with capac-
ity, this does not imply that the degree of categorical bias stays constant.
For example, if the magnitude of noise that is added to the latent activations
is fixed, more separation between two points in principle-component space
implies that the decoder can more easily distinguish between them despite
the noisiness. In fact, as network capacity is increased, the magnitude of
noise added to the latent variables tends to decrease (because this allows
more information to be stored), and thus two points that are a distance d
apart in principle-component space are at least as distinguishable at high
capacity compared to low capacity.

Figure 11. Target image reconstructions from low-capacity models trained in the categorical (top) and modal
(bottom) conditions. Leaf widths (top) and leaf angles (bottom) of target plants increase from left to right. In both
conditions, similar results were found by varying the other leaf dimension.
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a loss function d that combined reconstruction and categorical
errors and showed that the network’s memories contained high
visual detail at high capacity but only retained category informa-
tion (apple vs. banana vs. tomato) at low capacity. Here we
demonstrate how these results can further our understanding of
memory systems in people. In brief, we conjecture that people’s
longer-term memory representations (older traces) correspond
to highly compressed codes, whereas their shorter-term memory
representations (younger traces) correspond to less-compressed
codes. We argue that this conjecture is both consistent with a
large body of empirical evidence and predicted by an extension
of the principles of efficient compression over the dimension of
time.

Conventional RDT, presented above, is atemporal in nature. It
studies the problem of transmitting information from point A to

point B without consideration of what happens to that information
after it is transmitted. Practical applications, however, must con-
sider the problem of storage. For example, people cannot simul-
taneously store all of their life experiences in their full perceptual
detail. They therefore must choose which information is main-
tained and for how long. This problem motivates an extension to
our study of efficient compression to the case in which represen-
tations are optimized over time. In this section, we sketch out
this extension in broad theoretical terms but leave to future
work many of its details. We start by presenting an additional
principle that pertains to the problem of deciding what trans-
mitted information to keep in storage over time, along with
empirical evidence for its implementation in human perceptual
memory systems. We then provide an extension to RDT which
formalizes this principle.

Figure 12. Pixel-wise correlations between reconstructions of target and comparison images as a function of
a model’s capacity. See the online article for the color version of this figure.

Figure 13. Reconstructions at different capacities. The left-most column contains the original images, while the
remaining columns (separated by vertical dark lines) contain reconstructions at three different capacities. Five
random samples are drawn for each combination of capacity level and original image. A high-capacity network
exhibits high-fidelity memory for the inputs, while at lower capacities, network memories become more
categorical and less certain of specific visual details, although they can still reliably distinguish the three chosen
classes (apples, tomatoes, bananas). See the online article for the color version of this figure.
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Information Decay Continuum Principle

The information decay continuum principle states that the av-
erage information content of individual memory traces tends to
decline over time, and the rate of this decay is roughly monotonic
in (e.g., proportional to) its current information content. Thus, the
timeline of a hypothetical memory trace would look something
like the following. First, at stimulus offset, highly detailed sensory
information decays very rapidly. Next, sensory (e.g., iconic) mem-
ory representations are less detailed (more categorical) and decay
more slowly. Short-term or working memory representations con-
tain still less sensory detail about the stimulus, are even more
categorical and abstract, and decay more slowly than those of
sensory memory. Finally, LTM representations contain the least
amount of fine detail about the originally observed stimulus, are
the most categorical and abstract, and decay slowest.

We account for the decay of individual traces by hypothesizing
that memory is biased toward representing recent information
because recent information tends to be more task-relevant (J. R.
Anderson, 1991; J. R. Anderson & Schooler, 1991). Consequently,
memory adaptively reallocates bits over time such that fewer
resources are devoted to older memory traces (suggesting that
these traces are recoded in more compact and abstract ways over
time) until so few resources are devoted to a trace that, effectively,
the trace has fully decayed. This process frees up memory re-
sources that can then be used to encode new information. An
exception occurs when information in a memory trace is actively
rehearsed or refreshed (A. Baddeley, 2003; Ricker & Cowan,
2010). Because rehearsal of older traces indicates that the infor-
mation in those traces remains task-relevant, those traces are not
recoded using fewer resources. For further intuition, consider the
analogy of trying to make room on a full computer hard drive. It
would be efficient to first remove large video files before worrying
about much smaller text files. Moreover, one could “recode” a
large video file by replacing it with a text file containing a

summary of its contents. Because LTM traces are highly abstract
and summary in nature (similar to text files), they can be retained
cheaply and many of these traces can be accrued over time. By
contrast, sensory and working memory traces are more detailed
(more similar to video files), and therefore not as many traces can
be kept concurrently.

The optimal recoding behavior of a system will depend on the
precise form of the recency bias. At one extreme, a trace may be
equally likely to be useful over a large range of delays (i.e., no
recency bias), in which case all memories will be highly com-
pressed, even soon after stimulus offset. At another extreme, the
average usefulness of a memory could drop precipitously over
time. In this case, all memories would be high resolution, but have
a short “shelf-life”, being wiped away quickly with no recoding
over time. Biological memory systems are likely to fall between
these two extremes, with perceptual memory traces that decay
linearly, exponentially, or according to a power law. Although we
leave further details to future work, we suspect that for a wide
range of candidate functional forms, the same qualitative results
will obtain: Older traces will tend to be more compressed and
abstract and will be maintained longer, whereas newer traces will
tend to be less compressed and more detailed and will be main-
tained for less time.

The psychology literature has attributed memory phenomena to
multiple distinct systems (e.g., sensory memory, working or short-
term perceptual memory, long-term perceptual memory, etc.). The
information continuum decay principle does not directly predict
separate systems, and so it is important to address how this
division could be explained. We speculate on two possible expla-
nations. First, to be optimal in its bit reallocation over time, a
compressed memory code would potentially need to change at
every moment in time, and this would demand an infinitely large
set of potential codes. Because neural substrates are finite, it is
unlikely that they could support an unbounded set of codes. There-

Figure 14. Principal components analysis of network memories. A low capacity network remembers little more
than the category of the input, while a higher-capacity network remembers more visual detail, as indicated by
the larger spread of points. The colors blue, red, and orange correspond to the classes “apple,” “banana,” and
“tomato,” respectively. Note the difference in axis limits between plots. See the online article for the color
version of this figure.
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fore, the (relatively small) number of memory systems that exist
may strike a balance between implementational costs of neural
hardware and optimal bit reallocation over time. Such a “bag” of
representations could provide a basis for an approximate solution
to the “recoding” problem in which the optimal code at each point
in time is approximated by a mixture or combination of codes. If
traces in each system degrade according to their mean information
contents (e.g., sensory memory degrades quickly, short-term mem-
ory [STM] degrades more slowly, etc.), then the overall abstract-
ness of a memory will increase over time. Thus, a discrete mixture
of representations could approximately implement the information
decay continuum principle. Alternatively, it may be possible to
recode information over time within the same neural circuits.

However, there is a second motivation for multiple memory
systems to exist. As perceptual memory tends to share neural
substrates with other perceptual functions, a division into multiple
systems may be in part due to the demands placed on perception
more broadly. For example, it is likely advantageous to possess a
hierarchy of representations extending from perceptually detailed
to more abstract, because agents then possess a wide range of
representations suitable for a wide range of tasks. For instance, we
know that animals possess both perceptually detailed representations
of recent stimuli needed, for example, for planning eye movements, as
well as more abstract or conceptual representations needed to, say,
decide what kind of fruit one is looking at. Because the “best”
representation is highly task-dependent, meaning that a wide variety
of representations must be maintained, the best overall choice of
representational architecture may be complex, depending on at least
the two partially competing demands just presented.

The questions raised here, and the speculative answers that we have
provided, deserve extensive future investigation. Although this inves-
tigation is in its early stages, we believe that there is substantial
empirical evidence for the information decay continuum principle,
including trace decay both within and across memory systems.

Evidence for decay within systems can be found in many experi-
ments. Sperling (1960) reported that visual representations of individ-
ual displays decayed in iconic memory within a few hundred milli-
seconds after stimulus offset. Luck (2008) reviewed evidence that
VWM representations of individual displays decay or drift over a
period of seconds. Konkle, Brady, Alvarez, and Oliva (2010) reported
that power law fits to their experimental data suggest that d= (a
measure of discriminability) on a visual LTM recognition task would
be above 1.0 after a day following study, would fall below 1.0 after a
month, and would be below 0.6 after a year.

There is also evidence for decay across memory systems. Ex-
perimental findings indicate that nearly all systems are influenced
by a mix of perceptual and more categorical factors, though the
representations of some systems tend to be relatively more per-
ceptual in nature, whereas the representations of other systems are
more categorical. For example, in the auditory domain, A. D.
Baddeley (1966b) reported that subjects’ performance on a verbal
STM task was worse when words were acoustically similar than
when they were semantically similar. A. D. Baddeley (1966a)
found the opposite results on a verbal LTM task. In this case,
performance was worse when words were semantically similar,
and performance did not decline when words were acoustically
similar. Baddeley’s results suggest that STM representations are
more perceptual, whereas LTM representations are more categor-
ical or conceptual.

Similar results have been found in the visual domain. Irwin
(1991, 1992) demonstrated that iconic memory maintained more
visual detail about an array of dots than VWM, whereas VWM
representations seemed to be more abstract, coding information in
a way that was robust to spatial translations. Although VWM
maintains representations that are somewhat detailed, recent re-
search reveals that these representations are also surprisingly ab-
stract. Brady and Alvarez (2011) found that observers’ memories
for the size of an object are systematically biased toward the mean
of the object’s category (see also Hemmer & Steyvers, 2009).
Several experiments also indicate that memories for spatial loca-
tion are biased toward spatial “prototypes” (Huttenlocher, Hedges,
Corrigan, & Crawford, 2004; Huttenlocher, Hedges, & Duncan,
1991; Huttenlocher, Newcombe, & Sandberg, 1994). VWM rep-
resentations not only encode “gist” or summary statistics (Oliva,
2005) over low-level visual features and textures, they also sum-
marize high-level constructs such as the emotion of a face (Hab-
erman & Whitney, 2007, 2009).

As abstract as VWM representations seem to be, visual LTM
representations appear to be even more so. Konkle et al. (2010)
performed a visual LTM experiment in which subjects viewed
2,800 color images of real-world objects for 3 s each during a
study session. Objects belonged to categories, and subjects studied
between one and 16 exemplars per category. Following study,
subjects performed memory recognition test trials. It was found
that as the number of exemplars from a category increased during
study, memory performance decreased. Further analysis revealed that
the conceptual distinctiveness of a category—low when category
exemplars belong to the same subcategories and high when exemplars
belong to different subcategories—is correlated with visual LTM
performance but perceptual distinctiveness is not. The authors con-
cluded that “observers’ capacity to remember visual information in
long-term memory depends more on conceptual structure than per-
ceptual distinctiveness” (Konkle et al., 2010, p. 558).

Taken as a whole, the pattern of results described here (and
many more results from the scientific literature) strongly support
the hypothesized continuum of systems ranging from those with
fast decay rates and high perceptual detail to slow decay rates and
small amounts of perceptual detail. The time-scales attributed to
different systems also support the hypothesized continuum of
decay rates. For example, iconic visual memories decay within
roughly 100 ms, visual short-term memories decay over a span of
seconds, and visual long-term memories decay over much longer
time spans.

Extending RDT

Here, we consider an extension of RDT to the “online” case in
which an agent both accrues new information and maintains old
information at each moment in time subject to an overall limit on
storage capacity. As we demonstrate, a consequence of a limited
storage capacity is that less abstract (e.g., perceptual) representa-
tions “decay” more rapidly than more abstract (e.g., mnemonic)
ones.

Because past experiences may be useful to future behavior, it is
desirable to store as much information about them as possible.
However, if the brain has limited capacity, then not everything can
be permanently maintained. Because recent memories are more
likely to be task-relevant (J. R. Anderson, 1991; J. R. Anderson &
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Schooler, 1991), the brain should delete information about past
experiences to “make room” for new ones. But memories do not
have to be completely deleted. Rather, they can be replaced with
compact summaries of their contents which may still convey
useful information. As a given memory recedes into the past, it
may be successively recoded with increasingly abstract summa-
ries, thereby allowing “freed up” memory resources to be used to
code new experiences.

This more general problem can be formalized as follows:

Q* � arg min
�p(x̂0:t | x0:t)�0

T
	0

T
Ep(x0:t, x̂0:t)

d(x0:t, x̂0:t) dt,

subject to I(x0:t; x̂0:t) � C ∀ 0 � t � T.
(3)

In this RDT formulation, we have introduced subscripts denot-
ing time because this optimization considers all inputs from the
start of time (all past experiences starting from time step zero) to
the current time (time step t). The random variable x̂0:t represents
the brain’s entire memory contents at time t. As the brain’s
contents may shift over time (e.g., to recode old memories), we
allow a different random variable x̂0:t for each moment in time. The
distortion function d then measures the error between all the
current memory contents x̂0:t and all the corresponding observa-
tions up to that point x0:t.

Because this optimization problem is computationally intracta-
ble, we do not attempt to solve it explicitly. However, if we assume
that the distortion function d includes a recency bias, as motivated
above, then there should be an intuitive result: old memory traces
should tend to resemble outputs of an optimal low-capacity chan-
nel (i.e., they should tend to be compact summaries), whereas
newer traces should tend to resemble outputs of a higher-capacity
channel (e.g., they should tend to contain fine-scale perceptual
detail). That is, using optimal data compression, it is possible for
a capacity-limited system to strike a balance in which the system
maintains both fine-scale details about a relatively small number of
recent experiences (these experiences are highly likely to be task-
relevant) and compact summaries of a larger number of older
experiences (which might also prove to be task-relevant).

Perceptual Attention

Empirical Evidence for Attention as Data
Compression

In the preceding sections we used the perspective of “efficient
data compression” to study important aspects of perception and
perceptual memory. In this section, we claim that this perspective
can also yield insights into perceptual attention. Indeed, research-
ers have argued that attentional shifts are an adaptation to capacity
limits—since people cannot perceive everything of interest in a
scene at once, people serially scan a scene over time to extract
needed information (Pashler, Johnston, & Ruthruff, 2001). In other
words, perception is capacity-limited, and attentional shifts are a
strategy for managing this limit. Here, we do not consider all
aspects of attention—attention is a notoriously sprawling and
unwieldy research domain—but rather focus on two common
experimental paradigms.

First, using the “multiple object tracking” (MOT) paradigm, the
works of Alvarez and Oliva (2008, 2009) are particularly relevant.

In Alvarez and Oliva (2009), subjects were given a primary task of
tracking moving objects, and a secondary task of remembering the
background texture. Although tracking the moving objects, texture
elements of the background changed on some trials. When there
was a change, texture elements were rotated by the same number
of degrees of angle. When rotated in one direction, they created a
highly noticeable change in global texture. However, when rotated
in the other direction, they maintained a constant global pattern.
When performing the concurrent tracking task, subjects were able
to detect changes to global texture but had much more difficulty
detecting the nonglobal texture changes. Without the concurrent
tracking task, subjects were better able to detect the nonglobal
texture changes. Alvarez and Oliva (2008) used a variant of the
concurrent tracking task to also show that people extract summary
statistics when attentional load is increased. Together, these data
suggest that people’s attentional filters are not all-or-none. For
example, when attentional load is high, the abstract “gist” of
seemingly unattended aspects of a scene can still be perceived and
remembered. From the standpoint of efficient data compression, it
seems that subjects in the Alvarez and Oliva experiments formed
a compressed code of a scene based on a high cost to misrepre-
senting the moving objects in a scene, and a low cost to misrep-
resenting the texture background. As we explain in more detail
below, the fact that subjects were able to detect a categorical
change to the background texture better than a noncategorical
change is well-explained by the properties of efficient data com-
pression.

Second, within the “visual search” experimental paradigm, we
take the well-known “pop-out” phenomenon as an illustrative
example. Experimentalists have found that certain targets, when
surrounded by certain kinds of distractors, are so easy to find that
they immediately “pop out”. More precisely, the amount of time
required to find the target increases very little with number of
distractors. Research has identified four important and comple-
mentary factors determining search times and pop-out: (a) target-
distractor similarity (Avraham, Yeshurun, & Lindenbaum, 2008;
Duncan & Humphreys, 1989); (b) distractor-distractor similarity
(Avraham et al., 2008; Duncan & Humphreys, 1989); (c) how
much “scrutiny” (i.e., representational detail) is required to distin-
guish targets and distractors (Ahissar & Hochstein, 1993; Hoch-
stein & Ahissar, 2002); and (d) familiarity with a display (Chun &
Jiang, 1998; Corneille, Goldstone, Queller, & Potter, 2006; Eck-
stein, 2011; Wang, Cavanagh, & Green, 1994).

Efficient data compression provides a coherent and theoretically
grounded explanation for all four of these factors. Our key as-
sumption is that when a search array is easy to compress, enough
perceptual detail is represented so that the target can be distin-
guished from distractors at first glance (i.e., pop-out occurs; Hoch-
stein & Ahissar, 2002). If, however, a search array is hard to
compress, this will not be possible, and thus it will be necessary to
shift attention to different areas in the display to perceive finer
details. The effects of target-distractor and distractor-distractor
similarity can be explained via the prior-knowledge principle
discussed above because more homogeneous regions of a display
contain less information and may be represented with shorter
codes, whereas more heterogeneous regions contain more infor-
mation and thus require longer codes. Indeed, this strategy is used
in popular image compression algorithms (Deutsch, 1996). The
task-dependency principle plays a key role in defining similarity
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because the nature of a task defines which objects or conjunctions
of features the visual system should consider to be similar or
dissimilar. The amount of scrutiny required to distinguish target
and distractor is a result of the limited-capacity principle because
a limited capacity makes representation of fine details more diffi-
cult. Lastly, the effects of stimulus familiarity on search times is
another obvious outgrowth of the prior-knowledge principle.

The theory of visual search we present here is broadly consistent
with another theory, the texture tiling model (TTM; Chang &
Rosenholtz, 2016). TTM posits that peripheral vision is well
described as a more compressed version of foveal vision, and
provides a particular algorithmic implementation of that compres-
sion. This theory accounts for many effects in visual attention
(including search performance) by considering the amount of
information that can be extracted from the periphery in visual
attention tasks (Rosenholtz, 2017). Our theory can be seen as
related to TTM but more abstracted, in that it does not explicitly
take into account differences between foveal and peripheral vision
and does not commit to any particular compression algorithm.

Modeling Attention as Data Compression

Here, we present simulations demonstrating how attentional allo-
cation of perceptual resources can be modeled in an end-to-end
manner as lossy compression. We consider simple visual search tasks
in which the target is defined by a single stimulus feature (e.g., shape),
and complex tasks in which the target is defined by a conjunction of
features (e.g., shape and color). Our hypothesis is that people’s search
speeds are related to the compressibility of search arrays. In particular,
we conjecture that single-feature search tasks tend to use displays that
are highly compressible (compact codes can still represent fine-scale
sensory information for these displays), and thus search speeds are
high, whereas conjunction tasks use displays that are less compress-
ible (codes can only represent coarser-scale information for these
displays) leading to slower search speeds.

To begin to explore this hypothesis, we created a single-feature
search task in which distractors were red objects composed of
horizontal and vertical edges, and targets were red squares. In this
case, targets could be located based on a single stimulus feature,
namely shape. In the conjunction search task, distractors were
either red or blue objects composed of horizontal and vertical
edges or were blue squares, and targets were red squares. A

conjunction of shape and color features was required to locate
targets in this type of task.

Extended model architectures were trained to perform the two
tasks. The autoencoder of an architecture was trained with respect
to both image reconstruction and decision errors, with a higher
weight on reconstruction error. The decision module was trained to
output the spatial coordinates of the target. The weight on the
reconstruction error was higher than the decision error because we
assume that people’s visual systems are primarily optimized for
more general visual features rather than ones that are specific to
this particular visual search task.

Figure 15 illustrates autoencoder image reconstructions cor-
responding to single-feature (top row) and conjunction (bottom
row) search displays. Reconstructions for each type of display
were produced by autoencoders with roughly equal measured
capacity. Because conjunction search displays contain more
stimulus information on average, reconstructions of these dis-
plays are lower-fidelity than those of single-feature search
displays.

To compare the compressibility of single-feature and conjunc-
tion search displays more carefully, we produced approximate
rate-distortion curves (as was done with the set-size experiment
above). If one type of search array is less compressible than
another, then its rate-distortion curve should be higher (larger
distortion or error values for the same rates). The results, shown in
Figure 16, confirmed our intuition that conjunction search displays
contain more visual information, as the rate-distortion curve for the
conjunction displays was clearly higher than that of the single-
feature displays. Taken as a whole, these results are consistent with
our hypothesis that single-feature search tasks use displays that are
highly compressible, and thus people’s search speeds are high,
whereas conjunction tasks use displays that are less compressible
leading to slower search speeds.

General Discussion

Engineers must take capacity limits into consideration when
designing artificial systems. A common way of ameliorating the
negative effects of capacity limits is through data compression.
When designing efficient data compression algorithms, RDT pro-
vides engineers with a principled mathematical framework for
quantifying the trade-offs between rate (or capacity) and distortion

Figure 15. Autoencoder image reconstructions for single-feature (top) and conjunction (bottom) search
displays. The leftmost image in a row shows the original display and the remaining images are image
reconstruction samples. See the online article for the color version of this figure.
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(or error). In this article, we have argued that a similar situation
holds with respect to people and other biological organisms. Be-
cause people’s perceptual and perceptual memory subsystems are
physically realized, they are necessarily capacity-limited. Biology
(or evolution/development) has discovered that data compression
can help people make the most of their limited capacities. Conse-
quently, RDT can provide psychologists with a rigorous frame-
work for understanding important aspects of perception and per-
ceptual memory.

A goal of this article has been to describe a small set of general
principles for efficient data compression that provides accounts for
many behavioral phenomena (and many experimental results in the
scientific literature) in multiple domains of perception and percep-
tual memory. These principles follow directly from RDT. This
aspect of our work can be regarded as a “computational theory.”
According to Marr (1982), a computational theory of an informa-
tion processing system analyzes the system’s goals to determine
what the system should do, such as the optimal computations a
system should perform in order to achieve its goals.

A second goal of this paper has been to present a modeling
framework for implementing the principles. We noted that exact
methods exist for RDT analysis in low-dimensional stimulus
spaces, but that approximate methods are needed for high-
dimensional spaces. Although previous researchers have used deep
neural networks to approximately implement RDT in high-
dimensional spaces, these implementations have been limited to
tasks in which the sole goal is data compression with respect to
reconstruction error (e.g., Ballé et al., 2016). An important contri-
bution of the research presented here is that we introduced a new
deep neural network architecture that approximately implements
RDT. Our architecture discovers good data compressions even
when the data will be used for regression, classification, recogni-
tion, or other tasks. Consequently, the model can perform the same
types of tasks as participants in experimental studies (e.g., change-
detection or recall tasks). A key property of our model is that it is
trained end-to-end, operating on raw perceptual input (e.g., pixel

values) rather than intermediate levels of abstraction, as is the case
with most psychological models. Our framework therefore repre-
sents an early step toward scaling up models of perception and
perceptual memory toward levels of complexity faced in real-
world situations. The neural network implementation of our theory
can be regarded as providing a “process” model of aspects of
perception and perceptual memory, focusing on the mechanisms
giving rise to perceptual and mnemonic phenomena (McClelland
et al., 2010).

A final goal of this article has been to offer conjectures about
possible implications of efficient compression for memory orga-
nization and attention. We discussed how efficient compression
can occur in memory over time, thereby providing motivations for
multiple memory systems operating at multiple time scales. We
also discussed how efficient compression may explain some atten-
tional phenomena such as RTs in visual search.

The work presented here is a broad explication, touching on
many different areas of perception and memory. Future research
will need to conduct detailed studies of the implications of this
work within each specific area. We close this article by describing
several directions for future research that we believe might be
particularly productive.

As mentioned above, our framework has the potential to shed
light on patterns of neural activity in biological organisms. For
instance, although some researchers have argued that the primary
goal of the visual ventral stream is categorization (Yamins &
DiCarlo, 2016), one could test the alternative hypothesis that the
primary goal is efficient data compression. If one assumes a
categorical loss function (as in some of our simulations), then the
former hypothesis can be recovered as a special case when the
weight on the pixel-reconstruction term in the loss function is zero.
Importantly, categorization and compression are not mutually ex-
clusive goals but, to the contrary, may be viewed as complemen-
tary. As demonstrated above, compression can lead to abstract
codes with a categorical bias.

Three of the principles for efficient data compression—limited
capacity, prior knowledge, and task dependency principles—fol-
low directly from RDT. The remaining principle—information
decay continuum—was introduced to address important aspects of
biological systems that are not addressed by traditional engineer-
ing work. The information decay continuum principle states that
there is a decline over time in the information content of individual
perceptual memory traces. We hypothesized that this decline is
useful to capacity-limited agents because it allows agents to devote
fewer resources to older traces over time, thereby freeing up
resources that can be used to encode new information (J. R.
Anderson, 1991; J. R. Anderson & Schooler, 1991).

The information decay continuum principle raises many chal-
lenging questions. For instance: How might “recoding” of memory
traces over time be implemented in biological systems? Can the
existence of multiple memory systems be explained as optimal
under certain assumptions, and do these systems correspond to the
ones hypothesized in the scientific literature? Given that there is
neural overlap between perception and perceptual memory, to
what extent do perceptual demands constrain memory perfor-
mance (and to what extent do memory demands constrain percep-
tual performance)?

An implication of the information decay continuum principle is
that perception and perceptual memory systems have substantial

Figure 16. Approximate rate-distortion curves for single-feature and
conjunction search displays. Error is based on Euclidean distance between
actual and predicted target coordinates. See the online article for the color
version of this figure.
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commonalities, operating in similar ways because they use similar
organizing principles (albeit at different time scales, and thus with
different parameter settings). If so, this implication is inconsistent
with theories arguing that the mind consists of multiple modules
(e.g., modules for perception, language, motor action, etc.), each
operating by its own set of principles (e.g., Fodor, 1983). As
discussed above, several studies have found that perceptual and
memory systems often function similarly, with similar representa-
tional biases and overlapping neural substrates. Future research
will need to explore the commonalities, both cognitive and neural,
among perception and memory in more detailed ways.

Another implication of the information-content continuum prin-
ciple is that systems have a continuum of representations ranging
from perceptually detailed representations of recent stimuli at one
end of the continuum to more categorical and abstract representa-
tions of recent and older stimuli at the other end. We hypothesized
that this diversity of representations is useful because different
tasks require different types of information. This hypothesis has
important ramifications for the study of decision making. For
example, Lennie (1998) argued that the visual system is composed
of multiple hierarchical levels and that task-relevant information
can be recovered at every level. If so, then decision making in
perceptual tasks requiring relatively low-level visual details (e.g.,
planning eye movements) is subserved by one set of levels,
whereas decision making in tasks requiring higher-level informa-
tion (e.g., distinguishing facial emotional expressions under mul-
tiple viewpoint and lighting conditions) is subserved by another
set. The existence of a continuum of perceptual and perceptual
memory systems with a continuum of representations motivates
the need for future work performing careful task analyses on a
range of behavioral tasks to uncover what information is needed
for each task, and what types of mental and neural representations
are most suitable for each task.

Above, we described our early steps toward thinking about
relationships between data compression and perceptual attention.
We described simulation results indicating that search times in
visual search tasks may be explained by capacity limits and lossy
compression. Although this is highly preliminary work, it suggests
the potential merits of a new conceptualization of attention based
on efficient data compression. Future work could explore this
research direction, further studying RDT accounts of search times
with different configurations of distractor and target objects, as
well as accounts of other phenomena studied in the domain of
perceptual attention.

Efficient data compression also has implications for understand-
ing learning and expertise. How should we understand the differ-
ences between domain experts and novices? RDT suggests three
important factors. It may be that experts outperform novices in a
domain because they have higher capacities when processing
stimuli in the domain. It may be that experts have greater prior
knowledge about the stimuli in the domain. Or it may be that
experts have loss functions that are more finely tuned to the tasks
in the domain. Future research can use RDT to quantitatively and
rigorously study the differences in these factors between experts
and novices.

The work presented here has been restricted to episodic percep-
tual memory, but the field of psychology has identified several
different types of memory systems. Do the principles underlying
perceptual memory also play a role in, say, semantic or procedural

memory? Our simulation results demonstrate that low-capacity
systems tend to develop categorical or abstract compressions of
stimuli. Do principles of efficient data compression also underlie
abstraction in semantic and procedural memory? For example, can
semantic and procedural memory also be shown to demonstrate
categorical bias and sensitivity to task demands and prior distri-
butions?

Lastly, we are encouraged by the successes of recent work
studying the implications of principles of efficient data compres-
sion in nonperceptual and nonmeneumonic domains. For instance,
Zaslavsky, Kemp, Regier, and Tishby (2018) argued that lan-
guages efficiently compress ideas into words. These authors found
that color-naming systems across languages achieve near-optimal
compression, studying this problem using an “information bottle-
neck” framework closely related to RDT. Similarly, C. A. Sims
(2003, 2006) developed a theory, called “rational inattention,”
explaining why it is optimal for capacity-limited economic agents
to attend to some decision variables while ignoring others. This
theory, which uses an optimization framework that is highly sim-
ilar to RDT, has important implications for macroeconomic, fi-
nance, behavioral economic, labor, trade, and political economy
issues. We conjecture that principles of efficient data compression
may serve as a unifying framework (among others) for understand-
ing aspects of human behavior in a wide range of domains.
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Mureşan, H., & Oltean, M. (2018). Fruit recognition from images using
deep learning. Acta Universitatis Sapientiae, Informatica, 10, 26–42.

Oberauer, K., & Eichenberger, S. (2013). Visual working memory declines
when more features must be remembered for each object. Memory &
Cognition, 41, 1212–1227.

Oliva, A. (2005). Gist of the scene. In L. Itti, G. Rees, & J. K. Tsotsos
(Eds.), Neurobiology of attention (pp. 251–256). Burlington, VT:
Elsevier Academic Press.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell recep-
tive field properties by learning a sparse code for natural images. Nature,
381, 607–609.

Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcom-
plete basis set: A strategy employed by V1? Vision Research, 37,
3311–3325.

Orhan, A. E., & Jacobs, R. A. (2013). A probabilistic clustering theory of
the organization of visual short-term memory. Psychological Review,
120, 297–328.

Orhan, A. E., & Jacobs, R. A. (2014). Toward ecologically realistic
theories in visual short-term memory research. Attention, Perception, &
Psychophysics, 76, 2158–2170.

Park, I. M., & Pillow, J. W. (2017). Bayesian efficient coding. bioRxiv
preprint 178418.

Parraga, C. A., Troscianko, T., & Tolhurst, D. J. (2000). The human visual
system is optimised for processing the spatial information in natural
visual images. Current Biology, 10, 35–38.

Pashler, H., Johnston, J. C., & Ruthruff, E. (2001). Attention and perfor-
mance. Annual Review of Psychology, 52, 629–651.

Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate
sensory systems. Nature Reviews Neuroscience, 6, 97–107.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic back-
propagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082.

Ricker, T. J., & Cowan, N. (2010). Loss of visual working memory within
seconds: The combined use of refreshable and non-refreshable features.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 36, 1355–1368.

Rosenholtz, R. (2017). Capacity limits and how the visual system copes
with them. Electronic Imaging, 2017, 8–23.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

25EFFICIENT DATA COMPRESSION

https://arxiv.org/pdf/1810.02845.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1312.6114.pdf


Rouder, J. N., Morey, R. D., Cowan, N., & Pealtz, M. (2004). Learning in
a unidimensional absolute identification task. Psychonomic Bulletin &
Review, 11, 938–944.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature, 323, 533–536.

Saad, E., & Silvanto, J. (2013a). How visual short-term memory mainte-
nance modulates the encoding of external input: Evidence from concur-
rent visual adaptation and TMS. Neuroimage, 72, 243–251.

Saad, E., & Silvanto, J. (2013b). How visual short-term memory mainte-
nance modulates subsequent visual aftereffects. Psychological Science,
24, 803–808.

Santurkar, S., Budden, D., & Shavit, N. (2018). Generative compression.
Picture coding symposium (pp. 258–262). San Francisco, CA: IEEE.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals, and under-
standing: An inquiry into human knowledge structures. Hillsdale, MI:
Erlbaum.

Schwarzkopf, D. S., & Kourtzi, Z. (2008). Experience shapes the utility of
natural statistics for perceptual contour integration. Current Biology, 18,
1162–1167.

Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-
specific delay activity in human primary visual cortex. Psychological
Science, 20, 207–214.

Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and cluster-
ing. Science, 210, 390–398.

Simon, H. A. (1972). Theories of bounded rationality. Decision and Or-
ganization, 1, 161–176.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and
neural representation. Annual Review of Neuroscience, 24, 1193–1216.

Sims, C. A. (2003). Implications of rational inattention. Journal of Mon-
etary Economics, 50, 665–690.

Sims, C. A. (2006). Rational inattention: Beyond the linear-quadratic case.
The American Economic Review, 96, 158–163.

Sims, C. R. (2016). Rate–distortion theory and human perception. Cogni-
tion, 152, 181–198.

Sims, C. R. (2018). Efficient coding explains the universal law of gener-
alization in human perception. Science, 360, 652–656.

Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal observer analysis
of visual working memory. Psychological Review, 119, 807–830.

Spence, I., Wong, P., Rusan, M., & Rastegar, N. (2006). How color enhances
visual memory for natural scenes. Psychological Science, 17, 1–6.

Sperling, G. (1960). The information available in brief visual presentations.
Psychological Monographs: General and Applied, 74, 1–29.

Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior
expectations in human visual speed perception. Nature Neuroscience, 9,
578–585.

Swan, G., Collins, J., & Wyble, B. (2016). Memory for a single object has
differently variable precisions for relevant and irrelevant features. Jour-
nal of Vision, 16(3), 32.

van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of
working memory models. Psychological Review, 121, 124–149.

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One
and done? Optimal decisions from very few samples. Cognitive Science,
38, 599–637.

Wang, Q., Cavanagh, P., & Green, M. (1994). Familiarity and pop-out in
visual search. Perception & Psychophysics, 56, 495–500.

Weckström, M., & Laughlin, S. B. (1995). Visual ecology and voltage-
gated ion channels in insect photoreceptors. Trends in Neurosciences,
18, 17–21.

Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual
memory. Journal of Experimental Psychology: General, 131, 48 – 64.

Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic
hidden states underlying working-memory-guided behavior. Nature
Neuroscience, 20, 864–871.

Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting
visual short-term memory for objects. Nature, 440, 91–95.

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning
models to understand sensory cortex. Nature Neuroscience, 19, 356.

Yoo, A. H., Klyszejko, Z., Curtis, C. E., & Ma, W. J. (2018). Strategic
allocation of working memory resource. Scientific Reports, 8, 16162.

Zaslavsky, N., Kemp, C., Regier, T., & Tishby, N. (2018). Efficient
compression in color naming and its evolution. Proceedings of the
National Academy of Sciences of the United States of America, 115,
7937–7942.

Zhaoping, L. (2006). Theoretical understanding of the early visual pro-
cesses by data compression and data selection. Network: Computation in
Neural Systems, 17, 301–334.

(Appendix follows)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

26 BATES AND JACOBS



Appendix

Model Details

All simulations used layers that are standard within the neural
network literature. No specific fine-tuning was required to produce
our results, and results were relatively insensitive to the choices of
number of hidden units and layers, as long as the number of units
was large. In simulations involving the plants datasets, we chose
standard fully-connected layers with “tanh” activation functions.
In experiments involving Fruits-360 and visual-search datasets, all
hidden units used rectified-linear activations (ReLU). All convo-
lutional layers used 3 	 3 kernels, with a stride of two. In
experiments that used a change-detection task, the decision module

output was a single sigmoidal unit, and was trained with cross-
entropy loss. For experiments in which the decision module was
trained to recall specific feature values, the decision loss was
squared error. Finally, in the natural-images experiment, the deci-
sion module output was a softmax layer with one output unit for
each of the three categories. All networks were trained with the
“Adam” optimization algorithm. Specific information about the
number of layers and number of units per layer is detailed in Table
A1. Code to run the experiments can be downloaded from https://
github.com/Rick-C-137/efficientPerceptualDataCompression.
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Table A1
Details of the Network Architectures for Each Experiment

Experiment Encoder hidden layers Latent units Decoder hidden layers Decision hidden layers

Plants MLP (500) 500 MLP (500) MLP (100)
MLP (500) MLP (500)

Plants set-size MLP (500) 500 MLP (500) MLP (100)
MLP (500) MLP (500)

Fruits-360 Conv 3 	 3 (32) 1000 MLP (3,136) None
Conv 3 	 3 (64) Conv 3 	 3 (64)
Conv 3 	 3 (64) Conv 3 	 3 (32)
Conv 3 	 3 (64) Conv 3 	 3 (32)
MLP (1,000)

Visual search Conv 3 	 3 (32) 500 MLP (4,096) None
Conv 3 	 3 (64) Conv 3 	 3 (64)
MLP (2,000)

Note. MLP � standard, fully-connected perceptron layers; Conv � standard 2D convolutional layers. Convolutional layers for the decoders were standard
“convolution-transpose” layers. Numbers in parentheses indicate the number of hidden units for MLP layers, or the number of filters for convolutional
layers. Each table entry for encoder, decoder, and decision layers is a comma-separated list of hidden layers. For example, in the plants experiments, the
encoder of the �-VAE had two fully-connected hidden layers, each with 500 units.
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